
CUDA Streams

Applied Parallel Computing
www.parallel-computing.pro

CUDA Streams

Stream – a logical sequence of dependent
asynchronous operations, independent from
operations in other streams.

Parallel streams can potentially be more efficient
than regular execution on combination of kernels
and host ⇔ device transfers, feeding both I/O and
computational units simultaneously.

Applied Parallel Computing
www.parallel-computing.pro

CUDA Streams

By default, all operations are performed in stream #0

Stream could be assigned to kernel, using
launch config: <<<..., stream>>>(...)

Asynchronous data transfers (cudaMemcpyAsync)
can work only with pinned memory (cudaMallocHost or
cudaHostRegister).

Applied Parallel Computing
www.parallel-computing.pro

Devices, Streams and Events

CUDA streams and events:
• Are bound to particular GPU, *current* one in the moment of
stream/event creation
• Each GPU has default stream (0)

Using CUDA streams and events:
• Kernel can be executed only in stream of the current GPU
• Data transfer can be performed in stream of any GPU
• CUDA Event can be recorded only in stream of the same GPU

Synchronization, querying:
• Any event or stream can be synchronized
 > Even if event/stream is bound to the current GPU

Applied Parallel Computing
www.parallel-computing.pro

Example 1

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);
cudaEventSynchronize(eventB);

OK:
• device #1 is set as current
• streamB and eventB are bound to device #1

Applied Parallel Computing
www.parallel-computing.pro

Example 2

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamA>>>(...);
cudaEventRecord(eventB, streamB);
cudaEventSynchronize(eventB);

ERROR:
• device #1 is set as current
• streamA is bound to device #0 (not current!)

Applied Parallel Computing
www.parallel-computing.pro

Example 3

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventA, streamB);

ERROR:
• eventA is bound to device #0
• streamB is bound to device #1

Applied Parallel Computing
www.parallel-computing.pro

Example 4

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

device #1 is set as current

device #0 is set as current

Applied Parallel Computing
www.parallel-computing.pro

Example 4

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device #0 is set as current
• it is allowed to sync/query events/streams
 bound to devices, other than the current

Applied Parallel Computing
www.parallel-computing.pro

Example 4

cudaStream_t streamA, streamB;
cudaEvent_t eventA, eventB;

cudaSetDevice(0);
cudaStreamCreate(&streamA); // streamA and eventA are bound to device #0
cudaEventCreaet(&eventA);

cudaSetDevice(1);
cudaStreamCreate(&streamB); // streamB and eventB are bound to device #1
cudaEventCreate(&eventB);

kernel<<<..., streamB>>>(...);
cudaEventRecord(eventB, streamB);

cudaSetDevice(0);
cudaEventSynchronize(eventB);
kernel<<<..., streamA>>>(...);

OK:
• device #0 is set as current
• it is allowed to sync/query events/streams
 bound to devices, other than the current
• device #0 will not start executing kernel until
 device #1 will finish executing its kernel

