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Overview of presentation

 Part I
 General Overview of IBM BlueGene Systems.
 Current strengths of BlueGene/Q system.
 New features added to BGQ

 Part II
 More on selective innovations in BGQ node.
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General Overview of IBM 
BlueGene Systems



4   © 2009 IBM Corporation

Evolutionary Road Map of Blue Gene Systems 

IBM Presentation Template Full Version
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Blue Gene Evolution

■ BG/L (5.7 TF/rack) – 130nm ASIC (1999-2004 GA)
– Embedded 440 core, dual-core system-on-chip
– Memory: 0.5/1 GB/node
– Biggest installed system (LLNL): 104 racks, 212,992 cores, 596 TF/s, 210 MF/W

■ BG/P (13.9 TF/rack) – 90nm ASIC (2004-2007 GA)
– Embedded 450 core
– Memory: 2/4 GB/node, quad core SOC, DMA
– Biggest installed system (Jülich): 72 racks, 294,912 cores, 1 PF/s, 357 MF/W
– SMP support, OpenMP, MPI

■ BG/Q (209 TF/rack) – 45nm ASIC+ (2007-2012 GA)
– A2 core, 16 core/64 thread SOC
– 16 GB/node
– Biggest installed system (LLNL): 96 racks, 1,572,864 cores, 20 PF/s, 2 GF/W,
– Speculative execution, sophisticated L1 prefetch, transactional memory, fast thread 

handoff, compute + IO systems.
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Blue Gene/Q
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Current Strengths of 
BlueGene/Q



9   © 2009 IBM Corporation

Key strengths of Blue Gene/Q

■ Performance/Power 

■ Scalability

■ Fault Tolerance

■ Ease of programmability
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Performance/Power

■ Top 5 entries in Green500 list (Nov 2011) are BlueGene/Q systems

■ BlueGene/Q systems are 1.6x better than best non BlueGene/Q system in the list

■ BlueGene/Q systems are generally more than 2x better than all but 2 non BlueGene/Q 
system in the list

■ BlueGene/Q systems are around 9.6x better than BlueGene/L systems which had best 
performance/power numbers 6 years back

■ BlueGene/Q systems are around 5.6x better than BlueGene/P systems which had best 
performance/power numbers 4 years back
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Scalability and Fault Tolerance

■ BlueGene systems are designed to scale well

■ Largest BlueGene/L systems had 212992 processors.

■ Largest BlueGene/P system had 294,912 processors

■ BlueGene/Q will have 1,572,864 processors in largest installation with 20 PF capability
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Ease of Programming

■ System software built around open standards.

■ Supports shared memory and hybrid programming models.

■ Supports MPI, OpenMP, UPC, ARMCI, global arrays, Charm++.

■ Supports dynamic linking.

■ Support for Transactional Memory.

■ Supports Speculative Execution.

■ Compiler support for auto-simdization.
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New features added to BGQ
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BGQ changes from BGL/BGP ( New Node )

■ New voltage scaled processing core (A2) with 4-way SMT

■ New SIMD floating point unit (8 flop/clock) with alignment support

■ New “intelligent” prefetcher also called perfect prefetcher

■ 17th Processor core for system functions.

■ Speculative multi-threading and transactional memory support with multiversioning L2 
Cache

■ Hardware mechanisms to help with multi-threading (wakeup unit)

■ Dual SDRAM-DDR3 memory controllers with up to 16 GB/node
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BGQ changes from BGL/BGP (New Network)

■ 5 D torus in compute nodes
– 2 GB/s bidirectional bandwidth on all (10+1) links
– Bisection bandwidth of 65TB/s (26PF/s) / 49 TB/s (20 PF/s) BGL at LLNL is 0.7 TB/s

■ Collective and barrier networks embedded in 5-D torus network.

■ Floating point addition support in collective network

■ Performance
– All-to-all: 97% of peak
– Bisection: > 93% of peak
– Nearest-neighbor: 98% of peak
– Collective: FP reductions at 94.6% of peak
– No performance problems identified in network logic
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BGQ changes from BGL/BGP ( New IO system )

■ I/O nodes in separate drawers/rack with private 3D (or 4D) torus

■ PCI-Express Gen 2 on every IO node with full sized PCI slot
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                   Part II
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More on selective innovations 
introduced in BGQ node
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Innovations that matter

■ To reduce the overhead to hand off work to high numbers of threads used in OpenMP and 
messaging through hardware support for atomic operations and fast wake up of cores.

– L2 Atomics
– Wakeup Unit

■ Multiversioning cache to help in a number of dimensions such as performance, ease of use 
and RAS.

– Transactional Memory
– Speculative Execution

■ Aggressive FPU to allow for higher single thread performance for some applications. Most 
will get modest bump (10-25%), some big bump (approaching 300%)

– QPX and auto-simdization

■ “perfect” prefetching for repeated memory reference patterns in arbitrarily long code 
segments. Also helps achieve higher single thread for some applications.

– L1 perfect prefetcher
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Atomic Operations : L2 Atomics 

■ L2 implements atomic operations on every 64-bit word in memory
– Allows specific memory operations to be performed atomically:

• Load: Increment, Decrement, Clear (plus variations)
• Store: Twin, Add, OR, XOR, Max (plus variations)

– Atomic operation is triggered by L2 when specific shadow physical addresses are 
read/written

■ CNK exposes these L2 atomic physical addresses
– Kernel allocates an atomic page using a different base address beyond the 16G of 

Installed memory
– Applications must pre-register the location of the L2 atomic before access

• Otherwise segfault
– Fast barrier implementation using L2 atomics available

■ CNK also uses L2 atomics internally
– Fast performance counters (store w/ add 1)
– Locking

■ OpenMP exploits L2 atomics for lock/barrier
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Atomic Operations : L2 Atomics ( Continued )

■ Pipelined at L2

■ Low latency even under high contention

■ Faster OpenMP work hand off
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Wakeup Unit

■ Used in conjunction with the PowerPC wait instruction

■ When a hardware thread is in a wait state, the hardware thread stops executing and the 
other hardware threads will benefit from the additional available cycles.

■ Sends a wakeup signal to a hardware thread

■ Configurable wakeup conditions:
– WakeUp Address Compare
– Messaging Unit activity
– Interrupt sources

■ Kernel provides application interfaces to utilize the wakeup unit



23   © 2009 IBM Corporation

Transactional Memory

■ User  labels atomic sections

■   atomic
{

... 

–
 }

■ Underlying system ensures atomicity
– Executes In parallel when possible (speculation)

■ Goals:  
– Simplicity: as easy as coarse-grain locks
– Performance: as fast as fine-grain locks

■ BG/Q: first commercially available HTM system from IBM!
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Example using Locks and TM

// WITH LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);
}

Thread 0 move(a, b, key1); 

Thread 1 move(b, a, key2);

DEADLOCK!

// With TM
void move(T s, T d, Obj key){
#pragma tm_atomic
{                   
tmp = s.remove(key);
d.insert(key, tmp);
}
}

●Coarse-grain locking limits concurrency

●Fine-grain locking difficult

●Avoids Deadlock

●Fine Grain Locking
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BGQ TM Programming Model

■ Single entry, single exit code block
– Boundary of a transaction statically determined

■ Can be used with Pthreads, or openMP

■ Flat nesting semantic 
– Support in software 

■ What can go inside a TM region?
– Any computation is allowed inside the TM region
– Entire ISA is allowed

■ Compiler invocation
– ‐qtm for the compilers to recognize the pragma or directive
– Runtime report details specific success/failure metrics for each TM region such as 

number of transactions and rollbacks and reason for serialization.
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Management of L1 Cache

■ How does the L1 cache keeps a speculative thread’s writes invisible to the other three SMT 
threads?

■ Support for two modes for transactional memory:
– Short running (SR) mode (via L1 bypass)

• Core evicts speculative written cache line from L1
• Subsequent loads served from L2
• Loaded data placed directly into the register of the thread

– Long running (LR) mode (via TLB aliasing)
• Software creates illusion of versioned address space
• Bits in the physical address used by MMU to create the ‘aliasing effect’ at the L1 

level

■ Transaction memory runtime is implemented via both long and short running mode 
– Default: long running mode
– Toggle to short running mode via environment variable: 

TM_SHORT_RUNNING_TRANSACTION=YES
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STAMP/genome TM scaling performance
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Speculative Execution

■ Similar to Transactional Memory
– Except Ordered thread commit and different usage model

■ Leverages existing OpenMP parallelization
– However compiler does not need to guarantee that there is no array overlap
– Should allow the compiler to do a much better job of auto-parallelizing

■ Total work is subdivided into workunits without locking

■ If work units collide in memory:
– SE hardware detects
– Kernel rolls back transaction
– Runtime decides whether to retry or serialize

■ #pragma speculative 
– Inspired by OpenMP
– parallel for and section
– -qsmp=speculative

■ XL Compiler only
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Quad FPU (QPX)

■ 4-wide double precision FPU SIMD

■ 2-wide complex SIMD

■ Supports a multitude of alignments

■ Allows for higher single thread performance for 
some applications
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Auto-SIMDization Support

■ Improving SIMD from BG/P/L to BG/Q
– Moving from low level optimizer to high-level optimizer due to better loop optimization 

structure, and alignment analysis

■ To enable SIMDization
– Start to compile (assume appropriate –qarch=qp and –qtune=qp option ):

• -O3 (compile time, limited hot and SIMD optimizations)
– Increase optimization Level

• -O4 (compile time, limited scope analysis, SIMDization)
• -O5 (link time, pointer analysis, whole-program analysis, and SIMD instruction)

– -qhot=level=0 (enables SIMD by default)

■ To disable SIMDization
– Turn off SIMDization for the program

• add -qhot=nosimd to the previous command line options
– Turn off simdization for a particular loop

• #pragma nosimd | !IBM* NOSIMD

■ Tune your programs
– Help the compiler with extra information (directives/pragmas)
– Check the SIMD instruction generation in the object code listing (-qsource -qlist).
– Use compiler feedback (-qreport -qhot) to guide you.
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L1 Perfect Prefetcher

■ Dedicated L1p (4K) resides between dedicated L1 (32K) and shared 
L2

■ The L1p has 2 different prefetch algorithms:
– Stream prefetcher

• Similar to the prefetcher algorithms used on BGL/BGP
– “Perfect” prefetcher

■ Perfect Prefetcher:
– First iteration through code during training run:

• BQC records sequence of memory load accesses
• Sequence is stored in DDR memory

– Subsequent iteration through code:
• BQC loads the sequence and tracks where the code is in 

the sequence
• Prefetcher attempts to prefetch memory before it is needed 

in the sequence

■ Kernel provides access routines to setup and configure the stream 
and perfect prefetchers
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Thank you
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Further Resources

■ Scicomp 2012 Tutorial by Amy Wang

http://spscicomp.org/wordpress/wp-content/uploads/2012/04/ScicomP-2012-Tutorial-BGQ-Amy-Wang.pdf

■ PRACE winter school 2012 by Pascal Vezolle

http://www.training.prace-ri.eu/uploads/tx_pracetmo/BG-Q-_Vezolle.pdf 

http://spscicomp.org/wordpress/wp-content/uploads/2012/04/ScicomP-2012-Tutorial-BGQ-Amy-Wang.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BG-Q-_Vezolle.pdf
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