
1 © 2009 IBM Corporation

New and Innovative Features of IBM System BlueGene/Q

19 June 2012
Indra Mani
indramani@in.ibm.com

2 © 2009 IBM Corporation

Overview of presentation

 Part I
 General Overview of IBM BlueGene Systems.
 Current strengths of BlueGene/Q system.
 New features added to BGQ

 Part II
 More on selective innovations in BGQ node.

3 © 2009 IBM Corporation

General Overview of IBM
BlueGene Systems

4 © 2009 IBM Corporation

Evolutionary Road Map of Blue Gene Systems

IBM Presentation Template Full Version

5 © 2009 IBM Corporation

Blue Gene Evolution

■ BG/L (5.7 TF/rack) – 130nm ASIC (1999-2004 GA)
– Embedded 440 core, dual-core system-on-chip
– Memory: 0.5/1 GB/node
– Biggest installed system (LLNL): 104 racks, 212,992 cores, 596 TF/s, 210 MF/W

■ BG/P (13.9 TF/rack) – 90nm ASIC (2004-2007 GA)
– Embedded 450 core
– Memory: 2/4 GB/node, quad core SOC, DMA
– Biggest installed system (Jülich): 72 racks, 294,912 cores, 1 PF/s, 357 MF/W
– SMP support, OpenMP, MPI

■ BG/Q (209 TF/rack) – 45nm ASIC+ (2007-2012 GA)
– A2 core, 16 core/64 thread SOC
– 16 GB/node
– Biggest installed system (LLNL): 96 racks, 1,572,864 cores, 20 PF/s, 2 GF/W,
– Speculative execution, sophisticated L1 prefetch, transactional memory, fast thread

handoff, compute + IO systems.

6 © 2009 IBM Corporation

7 © 2009 IBM Corporation

Blue Gene/Q

8 © 2009 IBM Corporation

Current Strengths of
BlueGene/Q

9 © 2009 IBM Corporation

Key strengths of Blue Gene/Q

■ Performance/Power

■ Scalability

■ Fault Tolerance

■ Ease of programmability

10 © 2009 IBM Corporation

Performance/Power

■ Top 5 entries in Green500 list (Nov 2011) are BlueGene/Q systems

■ BlueGene/Q systems are 1.6x better than best non BlueGene/Q system in the list

■ BlueGene/Q systems are generally more than 2x better than all but 2 non BlueGene/Q
system in the list

■ BlueGene/Q systems are around 9.6x better than BlueGene/L systems which had best
performance/power numbers 6 years back

■ BlueGene/Q systems are around 5.6x better than BlueGene/P systems which had best
performance/power numbers 4 years back

11 © 2009 IBM Corporation

Scalability and Fault Tolerance

■ BlueGene systems are designed to scale well

■ Largest BlueGene/L systems had 212992 processors.

■ Largest BlueGene/P system had 294,912 processors

■ BlueGene/Q will have 1,572,864 processors in largest installation with 20 PF capability

12 © 2009 IBM Corporation

Ease of Programming

■ System software built around open standards.

■ Supports shared memory and hybrid programming models.

■ Supports MPI, OpenMP, UPC, ARMCI, global arrays, Charm++.

■ Supports dynamic linking.

■ Support for Transactional Memory.

■ Supports Speculative Execution.

■ Compiler support for auto-simdization.

13 © 2009 IBM Corporation

New features added to BGQ

14 © 2009 IBM Corporation

BGQ changes from BGL/BGP (New Node)

■ New voltage scaled processing core (A2) with 4-way SMT

■ New SIMD floating point unit (8 flop/clock) with alignment support

■ New “intelligent” prefetcher also called perfect prefetcher

■ 17th Processor core for system functions.

■ Speculative multi-threading and transactional memory support with multiversioning L2
Cache

■ Hardware mechanisms to help with multi-threading (wakeup unit)

■ Dual SDRAM-DDR3 memory controllers with up to 16 GB/node

15 © 2009 IBM Corporation

BGQ changes from BGL/BGP (New Network)

■ 5 D torus in compute nodes
– 2 GB/s bidirectional bandwidth on all (10+1) links
– Bisection bandwidth of 65TB/s (26PF/s) / 49 TB/s (20 PF/s) BGL at LLNL is 0.7 TB/s

■ Collective and barrier networks embedded in 5-D torus network.

■ Floating point addition support in collective network

■ Performance
– All-to-all: 97% of peak
– Bisection: > 93% of peak
– Nearest-neighbor: 98% of peak
– Collective: FP reductions at 94.6% of peak
– No performance problems identified in network logic

16 © 2009 IBM Corporation

BGQ changes from BGL/BGP (New IO system)

■ I/O nodes in separate drawers/rack with private 3D (or 4D) torus

■ PCI-Express Gen 2 on every IO node with full sized PCI slot

17 © 2009 IBM Corporation

 Part II

18 © 2009 IBM Corporation

More on selective innovations
introduced in BGQ node

19 © 2009 IBM Corporation

Innovations that matter

■ To reduce the overhead to hand off work to high numbers of threads used in OpenMP and
messaging through hardware support for atomic operations and fast wake up of cores.

– L2 Atomics
– Wakeup Unit

■ Multiversioning cache to help in a number of dimensions such as performance, ease of use
and RAS.

– Transactional Memory
– Speculative Execution

■ Aggressive FPU to allow for higher single thread performance for some applications. Most
will get modest bump (10-25%), some big bump (approaching 300%)

– QPX and auto-simdization

■ “perfect” prefetching for repeated memory reference patterns in arbitrarily long code
segments. Also helps achieve higher single thread for some applications.

– L1 perfect prefetcher

20 © 2009 IBM Corporation

Atomic Operations : L2 Atomics

■ L2 implements atomic operations on every 64-bit word in memory
– Allows specific memory operations to be performed atomically:

• Load: Increment, Decrement, Clear (plus variations)
• Store: Twin, Add, OR, XOR, Max (plus variations)

– Atomic operation is triggered by L2 when specific shadow physical addresses are
read/written

■ CNK exposes these L2 atomic physical addresses
– Kernel allocates an atomic page using a different base address beyond the 16G of

Installed memory
– Applications must pre-register the location of the L2 atomic before access

• Otherwise segfault
– Fast barrier implementation using L2 atomics available

■ CNK also uses L2 atomics internally
– Fast performance counters (store w/ add 1)
– Locking

■ OpenMP exploits L2 atomics for lock/barrier

21 © 2009 IBM Corporation

Atomic Operations : L2 Atomics (Continued)

■ Pipelined at L2

■ Low latency even under high contention

■ Faster OpenMP work hand off

22 © 2009 IBM Corporation

Wakeup Unit

■ Used in conjunction with the PowerPC wait instruction

■ When a hardware thread is in a wait state, the hardware thread stops executing and the
other hardware threads will benefit from the additional available cycles.

■ Sends a wakeup signal to a hardware thread

■ Configurable wakeup conditions:
– WakeUp Address Compare
– Messaging Unit activity
– Interrupt sources

■ Kernel provides application interfaces to utilize the wakeup unit

23 © 2009 IBM Corporation

Transactional Memory

■ User labels atomic sections

■ atomic
{

...

–
 }

■ Underlying system ensures atomicity
– Executes In parallel when possible (speculation)

■ Goals:
– Simplicity: as easy as coarse-grain locks
– Performance: as fast as fine-grain locks

■ BG/Q: first commercially available HTM system from IBM!

24 © 2009 IBM Corporation

Example using Locks and TM

// WITH LOCKS
void move(T s, T d, Obj key){
LOCK(s);
LOCK(d);
tmp = s.remove(key);
d.insert(key, tmp);
UNLOCK(d);
UNLOCK(s);
}

Thread 0 move(a, b, key1);

Thread 1 move(b, a, key2);

DEADLOCK!

// With TM
void move(T s, T d, Obj key){
#pragma tm_atomic
{
tmp = s.remove(key);
d.insert(key, tmp);
}
}

●Coarse-grain locking limits concurrency

●Fine-grain locking difficult

●Avoids Deadlock

●Fine Grain Locking

25 © 2009 IBM Corporation

BGQ TM Programming Model

■ Single entry, single exit code block
– Boundary of a transaction statically determined

■ Can be used with Pthreads, or openMP

■ Flat nesting semantic
– Support in software

■ What can go inside a TM region?
– Any computation is allowed inside the TM region
– Entire ISA is allowed

■ Compiler invocation
– ‐qtm for the compilers to recognize the pragma or directive
– Runtime report details specific success/failure metrics for each TM region such as

number of transactions and rollbacks and reason for serialization.

26 © 2009 IBM Corporation

Management of L1 Cache

■ How does the L1 cache keeps a speculative thread’s writes invisible to the other three SMT
threads?

■ Support for two modes for transactional memory:
– Short running (SR) mode (via L1 bypass)

• Core evicts speculative written cache line from L1
• Subsequent loads served from L2
• Loaded data placed directly into the register of the thread

– Long running (LR) mode (via TLB aliasing)
• Software creates illusion of versioned address space
• Bits in the physical address used by MMU to create the ‘aliasing effect’ at the L1

level

■ Transaction memory runtime is implemented via both long and short running mode
– Default: long running mode
– Toggle to short running mode via environment variable:

TM_SHORT_RUNNING_TRANSACTION=YES

27 © 2009 IBM Corporation

STAMP/genome TM scaling performance

1 2 4 8 16 32 64
0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

20.000

Genome Scaling

TM_TYPE=long
TM_TYPE=short

Threads

sc
a

lin
g

 w
rt

 s
in

g
le

 th
re

a
d

 T
M

28 © 2009 IBM Corporation

Speculative Execution

■ Similar to Transactional Memory
– Except Ordered thread commit and different usage model

■ Leverages existing OpenMP parallelization
– However compiler does not need to guarantee that there is no array overlap
– Should allow the compiler to do a much better job of auto-parallelizing

■ Total work is subdivided into workunits without locking

■ If work units collide in memory:
– SE hardware detects
– Kernel rolls back transaction
– Runtime decides whether to retry or serialize

■ #pragma speculative
– Inspired by OpenMP
– parallel for and section
– -qsmp=speculative

■ XL Compiler only

29 © 2009 IBM Corporation

Quad FPU (QPX)

■ 4-wide double precision FPU SIMD

■ 2-wide complex SIMD

■ Supports a multitude of alignments

■ Allows for higher single thread performance for
some applications

30 © 2009 IBM Corporation

Auto-SIMDization Support

■ Improving SIMD from BG/P/L to BG/Q
– Moving from low level optimizer to high-level optimizer due to better loop optimization

structure, and alignment analysis

■ To enable SIMDization
– Start to compile (assume appropriate –qarch=qp and –qtune=qp option):

• -O3 (compile time, limited hot and SIMD optimizations)
– Increase optimization Level

• -O4 (compile time, limited scope analysis, SIMDization)
• -O5 (link time, pointer analysis, whole-program analysis, and SIMD instruction)

– -qhot=level=0 (enables SIMD by default)

■ To disable SIMDization
– Turn off SIMDization for the program

• add -qhot=nosimd to the previous command line options
– Turn off simdization for a particular loop

• #pragma nosimd | !IBM* NOSIMD

■ Tune your programs
– Help the compiler with extra information (directives/pragmas)
– Check the SIMD instruction generation in the object code listing (-qsource -qlist).
– Use compiler feedback (-qreport -qhot) to guide you.

31 © 2009 IBM Corporation

L1 Perfect Prefetcher

■ Dedicated L1p (4K) resides between dedicated L1 (32K) and shared
L2

■ The L1p has 2 different prefetch algorithms:
– Stream prefetcher

• Similar to the prefetcher algorithms used on BGL/BGP
– “Perfect” prefetcher

■ Perfect Prefetcher:
– First iteration through code during training run:

• BQC records sequence of memory load accesses
• Sequence is stored in DDR memory

– Subsequent iteration through code:
• BQC loads the sequence and tracks where the code is in

the sequence
• Prefetcher attempts to prefetch memory before it is needed

in the sequence

■ Kernel provides access routines to setup and configure the stream
and perfect prefetchers

32 © 2009 IBM Corporation

Thank you

33 © 2009 IBM Corporation

Further Resources

■ Scicomp 2012 Tutorial by Amy Wang

http://spscicomp.org/wordpress/wp-content/uploads/2012/04/ScicomP-2012-Tutorial-BGQ-Amy-Wang.pdf

■ PRACE winter school 2012 by Pascal Vezolle

http://www.training.prace-ri.eu/uploads/tx_pracetmo/BG-Q-_Vezolle.pdf

http://spscicomp.org/wordpress/wp-content/uploads/2012/04/ScicomP-2012-Tutorial-BGQ-Amy-Wang.pdf
http://www.training.prace-ri.eu/uploads/tx_pracetmo/BG-Q-_Vezolle.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

