
Performance Engineering in HPC
Application Development

Felix Wolf
27-06-2012

German Research School
for Simulation Sciences

•  Joint venture of
–  Forschungszentrum Jülich
–  RWTH Aachen University

•  Four research laboratories
–  Computational biophysics
–  Computational engineering
–  Computational materials science
–  Parallel programming

•  Education
–  M.Sc. in Simulation Sciences
–  Ph.D. program

•  About 50 scientific staff members

Aachen	

Jülich	

Forschungszentrum Jülich

Helmholtz Center
with ca. 4400
employees

Application areas
–  Health
–  Energy
–  Environment
–  Information

Key competencies
–  Physics
–  Supercomputing

Rheinisch-Westfälische
Technische Hochschule Aachen

•  260 institutes in nine faculties
•  Strong focus on engineering
•  > 200 M€ third-party funding

per year
•  Around 31,000 students are

enrolled in over 100 academic
programs

•  More than 5,000 are international
students from 120 different
countries

•  Cooperates with Jülich within the
Jülich Aachen Research Alliance (JARA)

University	
 main	
 building	

Euro-Par 2013 in Aachen

•  International conference series
–  Dedicated to parallel and

distributed computing

•  Wide spectrum of topics
–  Algorithms and theory
–  Software technology
–  Hardware-related issues

5	

Performance

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1	

Performance	
 ~	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Resources	
 to	
 solu<on	
 	

Time	
 Energy	

…	
 and	
 ul<mately	

Money	
 Hardware	

Performance optimization pays off

Resource	
 type	
 	
 Frac2on	
 of	
 TCO	

Hardware	
 1/2	

Energy	
 1/4	

Staff	
 1/8	

Others	
 1/8	

Example:	
 HPC	
 Service	
 RWTH	
 Aachen	

~300	
 TFlops	
 Bull/Intel	
 cluster	

	

Total	
 cost	
 of	
 ownership	
 (TCO)	
 per	
 year:	
 5.5	
 M€	
 	

Source:	
 Bischof,	
 an	
 Mey,	
 Iwainsky:	
 Brainware	
 for	
 green	

HPC,	
 	
 Computer	
 Science-­‐Research	
 and	
 Development,	

Springer	

Tuning	
 the	
 	

workload	
 by	
 1%	
 	

will	
 “save”	
 	

55k€	
 per	
 year	
 	

~	
 1	
 FTE	

Objectives

•  Learn about basic performance measurement and
analysis methods and techniques for HPC applications

•  Get to know Scalasca, a scalable and portable
performance analysis tool

Outline

•  Principles of parallel performance
•  Performance analysis techniques
•  Practical performance analysis using Scalasca

Mo2va2on	

	

	

	

	

	

	

	

	

	

	

	

Source:	
 Wikipedia	

Why parallelism at all?
Moore's Law is still in charge…

Mo2va2on	

	

	

	

	

	

	

	

	

Free lunch is over…

Parallelism

•  System/application level
–  Server throughput can be improved by spreading workload

across multiple processors or disks
–  Ability to add memory, processors, and disks is called scalability

•  Individual processor
–  Pipelining
–  Depends on the fact that many instructions do not depend on the

results of their immediate predecessors

•  Detailed digital design
–  Set-associative caches use multiple banks of memory
–  Carry-lookahead in modern ALUs

Amdahl’s Law for parallelism

•  Assumption – program can be parallelized on p
processors except for a sequential fraction f with

•  Speedup limited by sequential fraction

!

0 " f "1

!

Speedup(p) =
ts
t p

=
1

f +
1" f
p

<
1
f

Available parallelism

•  Overall speedup of 80 on 100 processors

!

80 =
1

f +
1" f
p

00250.f =

Law of Gustafson

•  Amdahl’s Law ignores increasing problem size
–  Parallelism often applied to calculate bigger problems instead of

calculating a given problem faster

•  Fraction of sequential part may be function of problem
size

•  Assumption
–  Sequential part has constant runtime
–  Parallel part has runtime

•  Speedup

fτ
)p,n(vτ

p
)p,n(
),n()p,n(Speedup n

vf

vf ⎯⎯ →⎯
+

+
=

∞→ττ
ττ 1

If	
 	
 parallel	
 part	
 can	
 be	

perfectly	
 parallelized	

Parallel efficiency

•  Metric for cost of parallelization (e.g., communication)
•  Without super-linear speedup

•  Super-linear speedup possible
–  Critical data structures may fit into the aggregate cache

p
)p(Speedup)p(Efficiency =

1≤)p(Efficiency

Scalability

•  Weak scaling
–  Ability to solve a larger input problem by using more resources

(here: processors)
–  Example: larger domain, more particles, higher resolution

•  Strong scaling
–  Ability to solve the same input problem faster as more resources

are used
–  Usually more challenging
–  Limited by Amdahl’s Law and communication demand

Serial vs. parallel performance

•  Serial programs
–  Cache behavior and ILP

•  Parallel programs
–  Amount of parallelism
–  Granularity of parallel tasks
–  Frequency and nature of inter-task communication
–  Frequency and nature of synchronization

•  Number of tasks that synchronize much higher → contention

Goals of performance analysis

•  Compare alternatives
–  Which configurations are best under which conditions?

•  Determine the impact of a feature
–  Before-and-after comparison

•  System tuning
–  Find parameters that produce best overall performance

•  Identify relative performance
–  Which program / algorithm is faster?

•  Performance debugging
–  Search for bottlenecks

•  Set expectations
–  Provide information for users

Analysis techniques (1)

•  Analytical modeling
–  Mathematical description of the system
–  Quick change of parameters
–  Often requires restrictive assumptions rarely met in practice

•  Low accuracy
–  Rapid solution
–  Key insights

•  Validation of simulations / measurements

•  Example
–  Memory delay

–  Parameters obtained from manufacturer or measurement

mcavg thhtt)1(−+=

Analysis techniques (2)

•  Simulation
–  Program written to model important features of the system being

analyzed
–  Can be easily modified to study the impact of changes
–  Cost

•  Writing the program
•  Running the program

–  Impossible to model every small detail
•  Simulation refers to “ideal” system
•  Sometimes low accuracy

•  Example
–  Cache simulator
–  Parameters: size, block size, associativity, relative cache and

memory delays

Analysis techniques (3)

•  Measurement
–  No simplifying assumptions
–  Highest credibility
–  Information only on specific system being measured
–  Harder to change system parameters in a real system
–  Difficult and time consuming
–  Need for software tools

•  Should be used in conjunction with modeling
–  Can aid the development of performance models
–  Performance models set expectations against which

measurements can be compared

Comparison of analysis techniques

	
 	
 Measurement	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Simula<on	
 	
 	
 	
 	
 	
 	
 –	
 	
 	
 	
 	
 	
 	
 Performance	
 model	
 	
 	
 	
 	

Number	
 of	
 parameters	

Model	
 error	

Based	
 on	
 SC’11	
 paper	
 from	
 Torsten	
 Hoefler	
 et	
 al.	

	
 	
 	

Metrics of performance

•  What can be measured?
–  A count of how many times an event occurs

•  E.g., Number of input / output requests
–  The duration of some time interval

•  E.g., duration of these requests
–  The size of some parameter

•  Number of bytes transmitted or stored

•  Derived metrics
–  E.g., rates / throughput
–  Needed for normalization

Primary performance metrics

•  Execution time, response time
–  Time between start and completion of a program or event
–  Only consistent and reliable measure of performance
–  Wall-clock time vs. CPU time

•  Throughput
–  Total amount of work done in a given time

•  Performance =

•  Basic principle: reproducibility
•  Problem: execution time is slightly non-deterministic

–  Use mean or minimum of several runs

1	

Execu<on	
 <me	

	
 	
 	

Alternative performance metrics

•  Clock rate
•  Instructions executed

per second
•  FLOPS

–  Floating-point operations per second

•  Benchmarks
–  Standard test program(s)
–  Standardized methodology
–  E.g., SPEC, Linpack

•  QUIPS / HINT [Gustafson and Snell, 95]
–  Quality improvements per second
–  Quality of solution instead of effort to reach it

“Math” operations?
 HW operations?

 HW instructions?
 Single or double

precision?

Peak performance

•  Peak performance is the performance a computer is
guaranteed not to exceed

Source:	
 Hennessy,	
 Paferson:	
 Computer	
 Architecture,	
 4th	
 edi<on,	
 Morgan	
 Kaufmann	

64	
 processors	

Performance tuning cycle

Instrumenta<on	

Measurement	

Analysis	

Presenta<on	

Op<miza<on	

Instrumentation techniques

•  Direct instrumentation
–  Measurement code is inserted at certain points in the program

•  Example: function entry/exit, dispatch or receipt of messages
–  Can be done manually or automatically
–  Advantage: captures all instrumented events
–  Disadvantage: overhead more difficult to control

•  Sampling (statistical approach)
–  Based on the assumption that a subset of a population being

examined is representative for the whole population
–  Measurement performed only in certain intervals - usually

implemented with timer interrupt
–  Advantage: overhead can be easily controlled
–  Disadvantage: incomplete information, harder to access program

state

Measurement

Typical performance data include
•  Counts
•  Durations

•  Communication cost
•  Synchronization cost
•  IO accesses
•  System calls
•  Hardware events

inclusive	

dura<on	

exclusive	

dura<on	

int foo()
{
 int a;

 a = a + 1;

 bar();

 a = a + 1;
}
	

Critical issues

•  Accuracy
–  Perturbation

•  Measurement alters program behavior
•  E.g., memory access pattern

–  Intrusion overhead
•  Measurement itself needs time and thus lowers performance

–  Accuracy of timers, counters
•  Granularity

–  How many measurements
•  Pitfall: short but frequently executed functions

–  How much information / work during each measurement

•  Tradeoff
–  Accuracy ⇔ expressiveness of data

Single-node performance

•  Huge gap between CPU and memory speed

•  Internal operation of a microprocessor potentially complex
–  Pipelining
–  Out-of-order instruction issuing
–  Branch prediction
–  Non-blocking caches

Source:	
 Hennessy,	
 Paferson:	
 Computer	

Architecture,	
 4th	
 edi<on,	
 Morgan	

Kaufmann	

Hardware counters

•  Small set of registers that count events
•  Events are signals related to the processor’s internal

function
•  Original purpose: design verification and performance

debugging for microprocessors
•  Idea: use this information to analyze the performance

behavior of an application as opposed to a CPU

Typical hardware counters

Cycle	
 count
Instruc<on	
 count All	
 instruc<ons	

Floa<ng	
 point	

Integer	

Load	
 /	
 store

Branches Taken	
 /	
 not	
 taken	

Mispredic<ons

Pipeline	
 stalls	
 due	
 to Memory	
 subsystem	

Resource	
 conflicts

Cache I/D	
 cache	
 misses	
 for	

different	
 levels	

Invalida<ons

TLB Misses	

Invalida<ons

Profiling

•  Mapping of aggregated information
–  Time
–  Counts

•  Calls
•  Hardware counters

•  Onto program and system entities
–  Functions, loops, call paths
–  Processes, threads

Call-path profiling

•  Behavior of a function may depend
on caller (i.e., parameters)

•  Flat function profile often not
sufficient

•  How to determine call path at
runtime?
–  Runtime stack walk
–  Maintain shadow stack

•  Requires tracking of function calls

main()
{
 A();
 B();
}

A() B()
{ {
 X(); Y();
 Y(); }
}

main	

A	

B	

X	

Y	

Y	

Event tracing

Section on
display

•  Typical events
–  Entering and leaving a function
–  Sending and receiving a message

Why tracing?

•  High level of detail
•  Allows in-depth post-mortem analysis of program behavior

–  Time-line visualization
–  Automatic pattern search

•  Identification of wait states
Discovery of
wait states

 zoom in

Obstacle: trace size

•  Problem: width and length of event trace

Number of processes

t

W
id

th

Execution time

t

t

long

short

Event frequency

t

t

high

low

	
 	
 	

Tracing vs. profiling

•  Advantages of tracing
–  Event traces preserve the temporal and spatial relationships

among individual events
–  Allows reconstruction of dynamic behavior of application

on any required abstraction level
–  Most general measurement technique

•  Profile data can be constructed from event traces

•  Disadvantages
–  Traces can become very large
–  Writing events to a file at runtime can cause perturbation
–  Writing tracing software is complicated

•  Event buffering, clock synchronization, …

•  Scalable performance-analysis toolset for parallel codes
–  Focus on communication & synchronization

•  Integrated performance analysis process
–  Performance overview on call-path level via call-path profiling
–  In-depth study of application behavior via event tracing

•  Supported programming models
–  MPI-1, MPI-2 one-sided communication
–  OpenMP (basic features)

•  Available for all major HPC platforms

Joint project of

The team

www.scalasca.org

45	

Mul<-­‐page	
 ar<cle	
 	

on	
 Scalasca	

Installations and users
•  Companies

–  Bull (France)
–  Dassault Aviation (France)
–  EDF (France)
–  Efield Solutions (Sweden)
–  GNS (Germany)
–  IBM (France, Germany)
–  INTES (Germany)
–  MAGMA (Germany)
–  RECOM (Germany)
–  SciLab (France)
–  Shell (Netherlands)
–  SiCortex (USA)
–  Sun Microsystems (USA, Singapore, India)
–  Qontix (UK)

•  Research / supercomputing centers
–  Argonne National Laboratory (USA)
–  Barcelona Supercomputing Center (Spain)
–  Bulgarian Supercomputing Centre (Bulgaria)
–  CERFACS (France)
–  Centre Informatique National de l’Enseignement Supérieur (France)
–  Commissariat à l'énergie atomique (France)
–  Computation-based Science and Technology Research Center (Cyprus)
–  CASPUR (Italy)
–  CINECA (Italy)
–  Deutsches Klimarechenzentrum (Germany)
–  Deutsches Zentrum für Luft- und Raumfahrt (Germany)
–  Edinburgh Parallel Computing Centre (UK)
–  Federal Office of Meteorology and Climatology (Switzerland)
–  Flanders ExaScience Lab (Belgium)
–  Forschungszentrum Jülich (Germany)
–  IT Center for Science (Finland)
–  High Performance Computing Center Stuttgart (Germany)
–  Irish Centre for High-End Computing (Ireland)
–  Institut du développement et des ressources en informatique scientifique

(France)
–  Karlsruher Institut für Technologie (Germany)
–  Lawrence Livermore National Laboratory (USA)
–  Leibniz-Rechenzentrum (Germany)
–  National Authority For Remote Sensing & Space Science (Egypt)
–  National Center for Atmospheric Research (USA)

•  Research/supercomputing centers (cont.)
–  National Center for Supercomputing Applications (USA)
–  National Laboratory for High Performance Computing (Chile)
–  Norddeutscher Verbund zur Förderung des Hoch- und

Höchstleistungsrechnens (Germany)
–  Oak Ridge National Laboratory (USA)
–  PDC Center for High Performance Computing (Sweden)
–  Pittsburgh Supercomputing Center (USA)
–  Potsdam-Institut für Klimafolgenforschung (Germany)
–  Rechenzentrum Garching (Germany)
–  SARA Computing and Networking Services (Netherlands)
–  Shanghai Supercomputer Center (China)
–  Swiss National Supercomputing Center (Switzerland)
–  Texas Advanced Computing Center (USA)
–  Texas A&M Supercomputing Facility (USA)
–  Très Grand Centre de calcul (France)

•  Universities
–  École Centrale Paris (France)
–  École Polytechnique Fédérale de Lausanne (Switzerland)
–  Institut polytechnique de Grenoble (France)
–  King Abdullah University of Science and Technology (Saudi Arabia)
–  Lund University (Sweden)
–  Lomonosov Moscow State University (Russia)
–  Michigan State University (USA)
–  Norwegian University of Science & Technology (Norway)
–  Politechnico di Milano (Italy)
–  Rensselaer Polytechnic Institute (USA)
–  Rheinisch-Westfälische Technische Hochschule Aachen (Germany)
–  Technische Universität Dresden (Germany)
–  Università degli Studi di Genova (Italy)
–  Universität Basel (Switzwerland)
–  Universitat Autònoma de Barcelona (Spain)
–  Université de Versailles St-Quentin-en-Yvelines (France)
–  University of Graz (Austria)
–  University of Oregon (USA)
–  University of Oslo (Norway)
–  University of Paderborn (Germany)
–  University of Tennessee (USA)
–  University of Tsukuba (Japan)
–  University of Warsaw (Poland)

•  9 defense-related computing centers

Which	
 problem?	
 Where	
 in	
 the	

program?	

Which	

process?	

Parallel	
 wait-­‐
state	
 search	

Summary	

report	

Wait-­‐state	

report	

Instr.	

target	

applica<on	
 	

Measurement	

library	

	

HWC	
 Local	
 event	

traces	

Op<mized	
 measurement	
 configura<on	

Instrumenter	

compiler	
 /	
 linker	

Instrumented	

executable	

Source	

modules	

Re
po

rt
	
 	

po
st
pr
oc
es
sin

g	

Wait-state analysis

•  Classification
•  Quantification

<me	

pr
oc
es
s	

(a)	
 Late	
 Sender	

<me	

pr
oc
es
s	

(c)	
 Late	
 Receiver	

<me	

pr
oc
es
s	

(b)	
 Late	
 Sender	
 /	
 Wrong	
 Order	

XNS CFD simulation application

•  Computational fluid dynamics code
–  Developed by Chair for Computational Analysis of Technical

Systems, RWTH Aachen University
–  Finite-element method on unstructured 3D meshes
–  Parallel implementation based on message passing
–  >40,000 lines of Fortran & C
–  DeBakey blood pump test case

•  Scalability of original version limited <1024 CPUs

Par<<oned	
 finite-­‐element	
 mesh	

Call-path profile: Computation

Execu<on	

<me	
 excl.	

MPI	
 comm	

Just	
 30%	
 of	

simula<on	

Widely	

spread	

in	
 code	

Widely	

spread	

in	
 code	

Widely	

spread	

in	
 code	

Call-path profile: P2P messaging

P2P	
 comm	

66%	
 of	

simula<on	
 Primarily	

in	
 scafer	

&	
 gather	

Primarily	

in	
 scafer	

&	
 gather	

MPI	
 point-­‐	

to-­‐point	
 	

communic-­‐	

a<on	
 <me	

Call-path profile: P2P sync. ops.

Masses	
 of	

P2P	
 sync.	

opera<ons	

Processes	

all	
 equally	

responsible	

Point-­‐to-­‐	

point	
 msgs	

w/o	
 data	

Trace analysis: Late sender

Half	
 of	
 the	

send	
 <me	
 	
 	

is	
 wai<ng	

Significant	

process	

imbalance	

Wait	
 <me	

of	
 receivers	

blocked	
 for	

late	
 sender	

XNS scalability remediation

•  Review of original XNS
–  Computation is well balanced
–  Real communication is very imbalanced
–  Huge amounts of P2P synchronisations

•  Grow exponentially with number of processes

•  Elimination of redundant messages
–  Relevant neighbor partitions known in advance from static mesh

partitioning
–  Most transfers still required at small scale

while connectivity is relatively dense
–  Growing benefits at larger scales (>512)

After removal of redundant messages

Original	

performance	

peaked	
 at	
 	

132	
 ts/hr	

Revised	

version	

con<nues	

to	
 scale	

XNS wait-state analysis of tuned version

MAGMAfill by MAGMASOFT® GmbH

•  Simulates mold-filling in
casting processes

•  Scalasca used
–  To identify communication

bottleneck
–  To compare alternatives using

performance algebra utility

•  23% overall runtime
improvement

INDEED by GNS® mbh

•  Finite-element code for the simulation of
material-forming processes

–  Focus on creation of element-stiffness matrix

•  Tool workflow
–  Scalasca identified serialization in critical

section as bottleneck
–  In-depth analysis using Vampir

•  Speedup of 30-40% after optimization

Scalability in terms of the number of cores

•  Application study of ASCI
Sweep3D benchmark

•  Identified MPI waiting time
correlating with computational
imbalance

•  Measurements & analyses
demonstrated on
–  Jaguar with up to 192k cores
–  Jugene with up to 288k cores

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

1

10

100

1000

Ti
m

e
[s

]

Measured execution
 - Computation
 - MPI processing
 - MPI waiting

Brian	
 J.N.	
 Wylie	
 et	
 al.:	
 Large-­‐scale	

performance	
 analysis	
 of	
 Sweep3D	
 with	

the	
 Sca lasca	
 too l se t .	
 Para l l e l	

Processing	
 Lefers,	
 20(4):397-­‐414,	

December	
 2010.	

Jaguar,	
 MK	
 =	
 10	
 (default)	

Computa<on	

Performance dynamics

•  Most simulation codes work iteratively
•  Growing complexity of codes makes performance

behavior more dynamic – even in the absence of failures
–  Periodic extra activities
–  Adaptation to changing state of computation

•  External influence (e.g., dynamic reconfiguration)

129.tera_t	

MPI	
 point-­‐to-­‐point	
 MPI	
 point-­‐to-­‐point	
 Execu<on	

 P2P communication in SPEC MPI 2007 suite

107.leslie3d	
 113.GemsFDTD	
 115.fds4	
 121.pop2	

126.leslie3d	
 128.GAPgeofem	
 129.tera_t	
 127.wrf2	

130.socorro	
 132.zeusmp2	
 137.lu	

Scalasca’s approach to performance dynamics

Overview	

•  Capture	
 overview	
 of	
 performance	
 dynamics	
 via	
 <me-­‐series	

profiling	

•  Time	
 and	
 count-­‐based	
 metrics	

Focus	

•  Iden<fy	
 pivotal	
 itera<ons	
 -­‐	
 if	
 reproducible	

In-­‐depth	

analysis	

•  In-­‐depth	
 analysis	
 of	
 these	
 itera<ons	
 via	
 tracing	

•  Analysis	
 of	
 wait-­‐state	
 forma<on	

•  Cri<cal-­‐path	
 analysis	

•  Tracing	
 restricted	
 to	
 itera<ons	
 of	
 interest	

New	

Time-series call-path profiling

•  Instrumentation of the main loop to distinguish individual iterations
•  Complete call tree with multiple metrics recorded for each iteration
•  Challenge: storage requirements proportional to #iterations

#include "epik_user.h"

void initialize() {}
void read_input() {}
void do_work() {}
void do_additional_work() {}
void finish iteration() {}
void write_output() {}

int main() {
 int iter;
 PHASE_REGISTER(iter,”ITER”);
 int t;
 initialize();
 read_input();
 for(t=0; t<5; t++) {
 PHASE_START(iter);
 do_work();
 do_additional_work();
 finish_iteration();
 PHASE_END(iter);
 }
 write_output();

 return 0;
}

Call	
 tree	
 Process	
 topology	

Online compression

•  Exploits similarities between
iterations
–  Summarizes similar iterations in a

single iteration via clustering and
structural comparisons

•  On-line to save memory at run-time
•  Process-local to

–  Avoid communication
–  Adjust to local temporal patterns

•  The number of clusters never
exceeds a predefined maximum
–  Merging of the two closest ones

0 100 200 300 400 500 600 700
Iteration #

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
[s

]

0 100 200 300 400 500 600 700
Iteration #

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
[s

]

147.l2wrf2	
 MPI	
 P2P	
 <me,	
 original	

compressed,	
 64	
 clusters	

0 2500 5000 7500 10000 12500 15000
Iteration #

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e
[s

]

0 2500 5000 7500 10000 12500 15000
Iteration #

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e
[s

]

compressed,	
 64	
 clusters	

143.dleslie	
 MPI	
 P2P	
 <me,	
 original	

Zoltán	
 Szebenyi	
 et	
 al.:	
 Space-­‐Efficient	
 Time-­‐
Series	
 Cal l -­‐Path	
 Profil ing	
 of	
 Paral lel	

Applica<ons.	
 In	
 Proc.	
 of	
 the	
 SC09	
 Conference,	

Portland,	
 Oregon,	
 ACM,	
 November	
 2009.	

Reconciling sampling and direct instrumentation

•  Semantic compression needs direct
instrumentation to capture communication metrics
and to track the call path

•  Direct instrumentation may result in excessive
overhead

•  New hybrid approach
–  Applies low-overhead sampling to user code
–  Intercepts MPI calls via direct instrumentation
–  Relies on efficient stack unwinding
–  Integrates measurements in statistically sound

manner

Zoltan	
 Szebenyi	
 et	
 al.:	
 Reconciling	
 sampling	
 and	
 direct	
 instrumenta<on	
 for	

unintrusive	
 call-­‐path	
 profiling	
 of	
 MPI	
 programs.	
 In	
 Proc.	
 of	
 IPDPS,	
 Anchorage,	
 AK,	

USA.	
 IEEE	
 Computer	
 Society,	
 May	
 2011.	
 	

Joint	
 work	
 with	

DROPS	

IGPM	
 &	
 SC,	
 RWTH	

Delay analysis

•  Classification of waiting times into
–  Direct vs. indirect
–  Propagating vs. terminal

•  Attributes costs of wait states to delay intervals
–  Scalable through parallel forward and backward replay of traces

<me	

pr
oc
es
s	

Delay	

Direct	
 wai<ng	
 <me	

	
 	
 Indirect	
 wai<ng	
 <me	
 	

David	
 Böhme	
 et	
 al.:	
 Iden<fying	
 the	
 root	
 causes	
 of	
 wait	
 states	
 in	
 large-­‐scale	
 parallel	

applica<ons.	
 In	
 Proc.	
 of	
 ICPP,	
 San	
 Diego,	
 CA,	
 IEEE	
 Computer	
 Society,	
 September	
 2010.	
 	

Best	
 Paper	
 Award	
 	

Zeus-MP/2

•  Performance solving 3-D magnetohydrodynamic blast
wave problem on 512 processes

Computa<on	
 Late-­‐sender	
 wait	
 states	

47.1	
 s	

0.62	
 s	

197.3	
 s	

151.6	
 s	

Zeus-MP/2 delay analysis

•  Subroutine “lorentz” has
highest delay costs

•  Delay originates from
border of central region

•  Cost distribution:
–  15.9 % short-term
–  84.1 % long-term

Delay	
 cost	
 distribu<on	

across	
 process	
 topology	
 	

Score-P measurement system

Applica<on	
 (MPI,	
 OpenMP,	
 accelerator,	
 PGAS,	
 hybrid)	

	

	

Score-­‐P	
 measurement	
 infrastructure	

Online	
 interface	
 Profiling	
 Tracing	

	

Interac<ve	

trace	

explora<on	

Vampir	

	

	

Performance	

dynamics	
 &	

wait	
 states	

	

Scalasca	
 	

Automa<c	

online	

classifica<on	

Periscope	
 	

Performance	

data	
 base	
 &	

data	
 mining	

TAU	

Future work

•  Integrate into production version
–  Time-series compression
–  Hybrid measurement technique
–  Delay & critical-path analysis

•  Further scalability improvements
•  Emerging architectures and programming models

–  Accelerators

•  Interoperability with 3rd-party tools
–  Common measurement library for several performance tools

•  Support for performance modeling
–  Performance extrapolation
–  Multi-experiment analysis

Virtual Institute –
High Productivity Supercomputing

The virtual institute in a… •  Partnership to develop advanced
programming tools for complex
simulation codes

•  Goals
•  Improve code quality
•  Speed up development

•  Activities
•  Tool development and

integration
•  Training
•  Support
•  Academic workshops

•  www.vi-hps.org

Thank you!

