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German Research School  
for Simulation Sciences 

•  Joint venture of  
–  Forschungszentrum Jülich 
–  RWTH Aachen University 

•  Four research laboratories 
–  Computational biophysics  
–  Computational engineering  
–  Computational materials science  
–  Parallel programming  

•  Education 
–  M.Sc. in Simulation Sciences 
–  Ph.D. program 

•  About 50 scientific staff members 

Aachen	  

Jülich	  



Forschungszentrum Jülich 

Helmholtz Center 
with ca. 4400 
employees 

 
Application areas 
–  Health 
–  Energy 
–  Environment 
–  Information 
 
Key competencies 
–  Physics 
–  Supercomputing 



Rheinisch-Westfälische  
Technische Hochschule Aachen 

•  260 institutes in nine faculties 
•  Strong focus on engineering 
•  > 200 M€ third-party funding  

per year 
•  Around 31,000 students are  

enrolled in over 100 academic  
programs 

•  More than 5,000 are international  
students from 120 different  
countries 

•  Cooperates with Jülich within the  
Jülich Aachen Research Alliance (JARA) 

University	  main	  building	  



Euro-Par 2013 in Aachen   

•  International conference series 
–  Dedicated to parallel and  

distributed computing 

•  Wide spectrum of topics 
–  Algorithms and theory  
–  Software technology  
–  Hardware-related issues 
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Performance 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  1	  
Performance	  ~	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Resources	  to	  solu<on	  	  

Time	   Energy	  

…	  and	  ul<mately	  

Money	  Hardware	  



Performance optimization pays off 

Resource	  type	  	   Frac2on	  of	  TCO	  

Hardware	   1/2	  

Energy	   1/4	  

Staff	   1/8	  

Others	   1/8	  

Example:	  HPC	  Service	  RWTH	  Aachen	  
~300	  TFlops	  Bull/Intel	  cluster	  
	  
Total	  cost	  of	  ownership	  (TCO)	  per	  year:	  5.5	  M€	  	  

Source:	  Bischof,	  an	  Mey,	  Iwainsky:	  Brainware	  for	  green	  
HPC,	  	  Computer	  Science-‐Research	  and	  Development,	  
Springer	  

Tuning	  the	  	  
workload	  by	  1%	  	  
will	  “save”	  	  
55k€	  per	  year	  	  
~	  1	  FTE	   



Objectives 

•  Learn about basic performance measurement and 
analysis methods and techniques for HPC applications 

•  Get to know Scalasca, a scalable and portable 
performance analysis tool   



Outline 

•  Principles of parallel performance 
•  Performance analysis techniques 
•  Practical performance analysis using Scalasca 



Mo2va2on	  

	  
	  
	  
	  
	  
	  
	  
	  
	  

	  
	  

Source:	  Wikipedia	  

Why parallelism at all?  
Moore's Law is still in charge… 



Mo2va2on	  

	  
	  
	  
	  
	  
	  

	  
	  

Free lunch is over… 



Parallelism 

•  System/application level 
–  Server throughput can be improved by spreading workload 

across multiple processors or disks 
–  Ability to add memory, processors, and disks is called scalability  

•  Individual processor 
–  Pipelining 
–  Depends on the fact that many instructions do not depend on the 

results of their immediate predecessors 

•  Detailed digital design 
–  Set-associative caches use multiple banks of memory 
–  Carry-lookahead in modern ALUs 



Amdahl’s Law for parallelism 

•  Assumption – program can be parallelized on p 
processors except for a sequential fraction f with 

•  Speedup limited by sequential fraction 
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Available parallelism 

•  Overall speedup of 80 on 100 processors 
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Law of Gustafson 

•  Amdahl’s Law ignores increasing problem size 
–  Parallelism often applied to calculate bigger problems instead of 

calculating a given problem faster 

•  Fraction of sequential part may be function of problem 
size 

•  Assumption 
–  Sequential part has constant runtime 
–  Parallel part has runtime 

•  Speedup 
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Parallel efficiency 

•  Metric for cost of parallelization (e.g., communication) 
•  Without super-linear speedup 

•  Super-linear speedup possible 
–  Critical data structures may fit into the aggregate cache 
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Scalability 

•  Weak scaling 
–  Ability to solve a larger input problem by using more resources 

(here: processors) 
–  Example: larger domain, more particles, higher resolution 

•  Strong scaling 
–  Ability to solve the same input problem faster as more resources 

are used 
–  Usually more challenging 
–  Limited by Amdahl’s Law and communication demand 



Serial vs. parallel performance 

•  Serial programs 
–  Cache behavior and ILP 

•  Parallel programs 
–  Amount of parallelism 
–  Granularity of parallel tasks 
–  Frequency and nature of inter-task communication 
–  Frequency and nature of synchronization 

•  Number of tasks that synchronize much higher → contention 



Goals of performance analysis 

•  Compare alternatives 
–  Which configurations are best under which conditions? 

•  Determine the impact of a feature 
–  Before-and-after comparison 

•  System tuning 
–  Find parameters that produce best overall performance 

•  Identify relative performance 
–  Which program / algorithm is faster? 

•  Performance debugging 
–  Search for bottlenecks 

•  Set expectations 
–  Provide information for users 



Analysis techniques (1) 

•  Analytical modeling 
–  Mathematical description of the system 
–  Quick change of parameters 
–  Often requires restrictive assumptions rarely met in practice 

•  Low accuracy 
–  Rapid solution 
–  Key insights 

•  Validation of simulations / measurements 

•  Example 
–  Memory delay 

–  Parameters obtained from manufacturer or measurement 

mcavg thhtt )1( −+=



Analysis techniques (2) 

•  Simulation 
–  Program written to model important features of the system being 

analyzed 
–  Can be easily modified to study the impact of changes 
–  Cost 

•  Writing the program 
•  Running the program 

–  Impossible to model every small detail 
•  Simulation refers to “ideal” system 
•  Sometimes low accuracy 

•  Example 
–  Cache simulator 
–  Parameters: size, block size, associativity, relative cache and 

memory delays 



Analysis techniques (3) 

•  Measurement 
–  No simplifying assumptions 
–  Highest credibility 
–  Information only on specific system being measured 
–  Harder to change system parameters in a real system 
–  Difficult and time consuming 
–  Need for software tools 

•  Should be used in conjunction with modeling 
–  Can aid the development of performance models 
–  Performance models set expectations against which 

measurements can be compared 

 
   

 



Comparison of analysis techniques 

	  	  Measurement	  	  	  	  	  	  	  	  	  	  –	  	  	  	  	  	  	  	  	  	  	  Simula<on	  	  	  	  	  	  	  –	  	  	  	  	  	  	  Performance	  model	  	  	  	  	  

Number	  of	  parameters	  

Model	  error	  

Based	  on	  SC’11	  paper	  from	  Torsten	  Hoefler	  et	  al.	  



	  	  	   

Metrics of performance 

•  What can be measured? 
–  A count of how many times an event occurs 

•  E.g., Number of input / output requests 
–  The duration of some time interval 

•  E.g., duration of these requests 
–  The size of some parameter 

•  Number of bytes transmitted or stored 

•  Derived metrics               
–  E.g., rates / throughput 
–  Needed for normalization  



Primary performance metrics 

•  Execution time, response time  
–  Time between start and completion of a program or event 
–  Only consistent and reliable measure of performance 
–  Wall-clock time vs. CPU time 

•  Throughput 
–  Total amount of work done in a given time 

•  Performance =  

•  Basic principle: reproducibility 
•  Problem: execution time is slightly non-deterministic 

–  Use mean or minimum of several runs 

 

1	  

Execu<on	  <me	  



	  	  	   

Alternative performance metrics  

•  Clock rate 
•  Instructions executed  

per second 
•  FLOPS 

–  Floating-point operations per second  

•  Benchmarks 
–  Standard test program(s) 
–  Standardized methodology 
–  E.g., SPEC, Linpack 

•  QUIPS / HINT [Gustafson and Snell, 95] 
–  Quality improvements per second 
–  Quality of solution instead of effort to reach it 

“Math” operations? 
   HW operations? 

      HW instructions? 
    Single or double 

precision? 



Peak performance 

•  Peak performance is the performance a computer is 
guaranteed not to exceed 

Source:	  Hennessy,	  Paferson:	  Computer	  Architecture,	  4th	  edi<on,	  Morgan	  Kaufmann	  

64	  processors	  



Performance tuning cycle 

Instrumenta<on	  

Measurement	  

Analysis	  

Presenta<on	  

Op<miza<on	  



Instrumentation techniques 

•  Direct instrumentation 
–  Measurement code is inserted at certain points in the program 

•  Example: function entry/exit, dispatch or receipt of messages 
–  Can be done manually or automatically 
–  Advantage: captures all instrumented events 
–  Disadvantage: overhead more difficult to control  

•  Sampling (statistical approach) 
–  Based on the assumption that a subset of a population being 

examined is representative for the whole population 
–  Measurement performed only in certain intervals - usually 

implemented with timer interrupt 
–  Advantage: overhead can be easily controlled  
–  Disadvantage: incomplete information, harder to access program 

state 



Measurement 

Typical performance data include 
•  Counts 
•  Durations 

•  Communication cost 
•  Synchronization cost 
•  IO accesses 
•  System calls 
•  Hardware events 
 

inclusive	  
dura<on	  

exclusive	  
dura<on	  

int foo()  
{ 
  int a; 
 
  a = a + 1; 
 
  bar(); 
 
  a = a + 1; 
} 
	  



Critical issues 

•  Accuracy 
–  Perturbation 

•  Measurement alters program behavior 
•  E.g., memory access pattern 

–  Intrusion overhead 
•  Measurement itself needs time and thus lowers performance 

–  Accuracy of timers, counters 
•  Granularity 

–  How many measurements 
•  Pitfall: short but frequently executed functions  

–  How much information / work during each measurement  

•  Tradeoff 
–  Accuracy ⇔ expressiveness of data 

 



Single-node performance 

•  Huge gap between CPU and memory speed 

•  Internal operation of a microprocessor potentially complex 
–  Pipelining 
–  Out-of-order instruction issuing 
–  Branch prediction 
–  Non-blocking caches                                                                                    

Source:	  Hennessy,	  Paferson:	  Computer	  
Architecture,	  4th	  edi<on,	  Morgan	  
Kaufmann	  



Hardware counters 

•  Small set of registers that count events  
•  Events are signals related to the processor’s internal 

function  
•  Original purpose: design verification and performance 

debugging for microprocessors 
•  Idea: use this information to analyze the performance 

behavior of an application as opposed to a CPU  



Typical hardware counters 

Cycle	  count 
Instruc<on	  count All	  instruc<ons	  

Floa<ng	  point	  
Integer	  
Load	  /	  store 

Branches Taken	  /	  not	  taken	  
Mispredic<ons 

Pipeline	  stalls	  due	  to Memory	  subsystem	  
Resource	  conflicts 

Cache I/D	  cache	  misses	  for	  
different	  levels	  
Invalida<ons 

TLB Misses	  
Invalida<ons 



Profiling 

•  Mapping of aggregated information 
–  Time 
–  Counts 

•  Calls 
•  Hardware counters 

•  Onto program and system entities 
–  Functions, loops, call paths 
–  Processes, threads 



Call-path profiling 

•  Behavior of a function may depend 
on caller (i.e., parameters) 

•  Flat function profile often not 
sufficient 

•  How to determine call path at 
runtime? 
–  Runtime stack walk 
–  Maintain shadow stack 

•  Requires tracking of function calls 

main() 
{ 
  A( ); 
  B( ); 
} 
 
 
A( )    B( )       
{       {            
  X();    Y();      
  Y();  }                    
}              

main	  

A	  

B	  

X	  

Y	  

Y	  



Event tracing 

Section on 
display 

•  Typical events 
–  Entering and leaving a function 
–  Sending and receiving a message 



Why tracing? 

•  High level of detail 
•  Allows in-depth post-mortem analysis of program behavior  

–  Time-line visualization 
–  Automatic pattern search 

•  Identification of wait states 
Discovery of 
wait states 

   zoom in 



Obstacle: trace size 

•  Problem: width and length of event trace 

Number of processes 

t 

W
id

th
 

Execution time 

t 

t 

long 

short 

Event frequency 

t 

t 

high 

low 



	  	  	   

Tracing vs. profiling 

•  Advantages of tracing 
–  Event traces preserve the temporal and spatial relationships 

among individual events  
–  Allows reconstruction of dynamic behavior of application 

on any required abstraction level 
–  Most general measurement technique 

•  Profile data can be constructed from event traces 

•  Disadvantages 
–  Traces can become very large 
–  Writing events to a file at runtime can cause perturbation 
–  Writing tracing software is complicated 

•  Event buffering, clock synchronization, … 



•  Scalable performance-analysis toolset for parallel codes 
–  Focus on communication & synchronization 

•  Integrated performance analysis process 
–  Performance overview on call-path level via call-path profiling   
–  In-depth study of application behavior via event tracing 

•  Supported programming models  
–  MPI-1, MPI-2 one-sided communication  
–  OpenMP (basic features) 

•  Available for all major HPC platforms 
 

 



Joint project of 



The team 



www.scalasca.org 
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Mul<-‐page	  ar<cle	  	  
on	  Scalasca	  



Installations and users 
•  Companies 

–  Bull (France) 
–  Dassault Aviation (France) 
–  EDF (France) 
–  Efield Solutions (Sweden) 
–  GNS (Germany) 
–  IBM (France, Germany) 
–  INTES (Germany) 
–  MAGMA (Germany) 
–  RECOM (Germany) 
–  SciLab (France) 
–  Shell (Netherlands) 
–  SiCortex (USA) 
–  Sun Microsystems (USA, Singapore, India) 
–  Qontix (UK) 

•  Research / supercomputing centers 
–  Argonne National Laboratory (USA) 
–  Barcelona Supercomputing Center (Spain) 
–  Bulgarian Supercomputing Centre (Bulgaria) 
–  CERFACS (France) 
–  Centre Informatique National de l’Enseignement Supérieur (France) 
–  Commissariat à l'énergie atomique (France) 
–  Computation-based Science and Technology Research Center (Cyprus) 
–  CASPUR (Italy)  
–  CINECA (Italy) 
–  Deutsches Klimarechenzentrum (Germany) 
–  Deutsches Zentrum für Luft- und Raumfahrt (Germany) 
–  Edinburgh Parallel Computing Centre (UK) 
–  Federal Office of Meteorology and Climatology (Switzerland) 
–  Flanders ExaScience Lab (Belgium) 
–  Forschungszentrum Jülich (Germany) 
–  IT Center for Science (Finland) 
–  High Performance Computing Center Stuttgart (Germany) 
–  Irish Centre for High-End Computing (Ireland) 
–  Institut du développement et des ressources en informatique scientifique 

(France) 
–  Karlsruher Institut für Technologie (Germany) 
–  Lawrence Livermore National Laboratory (USA) 
–  Leibniz-Rechenzentrum (Germany) 
–  National Authority For Remote Sensing & Space Science (Egypt) 
–  National Center for Atmospheric Research (USA) 

•  Research/supercomputing centers (cont.) 
–  National Center for Supercomputing Applications (USA) 
–  National Laboratory for High Performance Computing (Chile) 
–  Norddeutscher Verbund zur Förderung des Hoch- und 

Höchstleistungsrechnens (Germany) 
–  Oak Ridge National Laboratory (USA) 
–  PDC Center for High Performance Computing (Sweden) 
–  Pittsburgh Supercomputing Center (USA) 
–  Potsdam-Institut für Klimafolgenforschung (Germany) 
–  Rechenzentrum Garching (Germany) 
–  SARA Computing and Networking Services (Netherlands) 
–  Shanghai Supercomputer Center (China) 
–  Swiss National Supercomputing Center (Switzerland) 
–  Texas Advanced Computing Center (USA) 
–  Texas A&M Supercomputing Facility (USA) 
–  Très Grand Centre de calcul (France) 

•  Universities 
–  École Centrale Paris (France) 
–  École Polytechnique Fédérale de Lausanne (Switzerland) 
–  Institut polytechnique de Grenoble (France) 
–  King Abdullah University of Science and Technology (Saudi Arabia) 
–  Lund University (Sweden) 
–  Lomonosov Moscow State University (Russia) 
–  Michigan State University (USA) 
–  Norwegian University of Science & Technology (Norway) 
–  Politechnico di Milano (Italy) 
–  Rensselaer Polytechnic Institute (USA) 
–  Rheinisch-Westfälische Technische Hochschule Aachen (Germany) 
–  Technische Universität Dresden (Germany) 
–  Università degli Studi di Genova (Italy) 
–  Universität Basel (Switzwerland) 
–  Universitat Autònoma de Barcelona (Spain) 
–  Université de Versailles St-Quentin-en-Yvelines (France) 
–  University of Graz (Austria) 
–  University of Oregon (USA) 
–  University of Oslo (Norway) 
–  University of Paderborn (Germany) 
–  University of Tennessee (USA) 
–  University of Tsukuba (Japan) 
–  University of Warsaw (Poland) 

•  9 defense-related computing centers 



Which	  problem?	   Where	  in	  the	  
program?	  

Which	  
process?	  

Parallel	  wait-‐
state	  search	  

Summary	  
report	  

Wait-‐state	  
report	  

Instr.	  
target	  
applica<on	  	  

Measurement	  
library	  
	  

HWC	   Local	  event	  
traces	  

Op<mized	  measurement	  configura<on	  

Instrumenter	  
compiler	  /	  linker	  

Instrumented	  
executable	  

Source	  
modules	  

Re
po

rt
	  	  

po
st
pr
oc
es
sin

g	  



Wait-state analysis 

•  Classification 
•  Quantification 

<me	  

pr
oc
es
s	  

(a)	  Late	  Sender	  

<me	  

pr
oc
es
s	  

(c)	  Late	  Receiver	  
<me	  

pr
oc
es
s	  

(b)	  Late	  Sender	  /	  Wrong	  Order	  



XNS CFD simulation application 

•  Computational fluid dynamics code  
–  Developed by Chair for Computational Analysis of Technical 

Systems, RWTH Aachen University 
–  Finite-element method on unstructured 3D meshes 
–  Parallel implementation based on message passing 
–  >40,000 lines of Fortran & C 
–  DeBakey blood pump test case 

•  Scalability of original version limited <1024 CPUs 

Par<<oned	  finite-‐element	  mesh	  



Call-path profile: Computation 

Execu<on	  
<me	  excl.	  
MPI	  comm	  

Just	  30%	  of	  
simula<on	  

Widely	  
spread	  
in	  code	  

Widely	  
spread	  
in	  code	  

Widely	  
spread	  
in	  code	  



Call-path profile: P2P messaging 

P2P	  comm	  
66%	  of	  

simula<on	   Primarily	  
in	  scafer	  
&	  gather	  

Primarily	  
in	  scafer	  
&	  gather	  

MPI	  point-‐	  
to-‐point	  	  
communic-‐	  
a<on	  <me	  



Call-path profile: P2P sync. ops. 

Masses	  of	  
P2P	  sync.	  
opera<ons	  

Processes	  
all	  equally	  
responsible	  

Point-‐to-‐	  
point	  msgs	  
w/o	  data	  



Trace analysis: Late sender 

Half	  of	  the	  
send	  <me	  	  	  
is	  wai<ng	  

Significant	  
process	  
imbalance	  

Wait	  <me	  
of	  receivers	  
blocked	  for	  
late	  sender	  



XNS scalability remediation 

•  Review of original XNS 
–  Computation is well balanced 
–  Real communication is very imbalanced 
–  Huge amounts of P2P synchronisations  

•  Grow exponentially with number of processes 

•  Elimination of redundant messages 
–  Relevant neighbor partitions known in advance from static mesh 

partitioning  
–  Most transfers still required at small scale  

while connectivity is relatively dense 
–  Growing benefits at larger scales (>512) 

 



After removal of redundant messages 

Original	  
performance	  
peaked	  at	  	  
132	  ts/hr	  

Revised	  
version	  
con<nues	  
to	  scale	  



XNS wait-state analysis of tuned version 



MAGMAfill by MAGMASOFT® GmbH 

•  Simulates mold-filling in 
casting processes 

•  Scalasca used  
–  To identify communication 

bottleneck  
–  To compare alternatives using 

performance algebra utility 

•  23% overall runtime 
improvement 



INDEED by GNS® mbh 

•  Finite-element code for the simulation of 
material-forming processes 

–  Focus on creation of element-stiffness matrix 

•  Tool workflow 
–  Scalasca identified serialization in critical 

section as bottleneck 
–  In-depth analysis using Vampir 

•  Speedup of 30-40% after optimization 



Scalability in terms of the number of cores 

•  Application study of ASCI 
Sweep3D benchmark  

•  Identified MPI waiting time 
correlating with computational 
imbalance 

•  Measurements & analyses  
demonstrated on 
–  Jaguar with up to 192k cores 
–  Jugene with up to 288k cores 

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

1

10

100

1000

Ti
m

e 
[s

]

Measured execution
 - Computation
 - MPI processing
 - MPI waiting

Brian	   J.N.	   Wylie	   et	   al.:	   Large-‐scale	  
performance	  analysis	  of	  Sweep3D	  with	  
the	   Sca lasca	   too l se t .	   Para l l e l	  
Processing	   Lefers,	   20(4):397-‐414,	  
December	  2010.	  

Jaguar,	  MK	  =	  10	  (default)	  

Computa<on	  



Performance dynamics 

•  Most simulation codes work iteratively 
•  Growing complexity of codes makes performance 

behavior more dynamic – even in the absence of failures  
–  Periodic extra activities 
–  Adaptation to changing state of computation 

•  External influence (e.g., dynamic reconfiguration)  

129.tera_t	  

MPI	  point-‐to-‐point	   MPI	  point-‐to-‐point	  Execu<on	  



 P2P communication in SPEC MPI 2007 suite 

107.leslie3d	   113.GemsFDTD	   115.fds4	   121.pop2	  

126.leslie3d	   128.GAPgeofem	   129.tera_t	  127.wrf2	  

130.socorro	   132.zeusmp2	   137.lu	  



Scalasca’s approach to performance dynamics  

Overview	  

•  Capture	  overview	  of	  performance	  dynamics	  via	  <me-‐series	  
profiling	  
•  Time	  and	  count-‐based	  metrics	  

Focus	  
•  Iden<fy	  pivotal	  itera<ons	  -‐	  if	  reproducible	  

In-‐depth	  
analysis	  

•  In-‐depth	  analysis	  of	  these	  itera<ons	  via	  tracing	  
•  Analysis	  of	  wait-‐state	  forma<on	  
•  Cri<cal-‐path	  analysis	  
•  Tracing	  restricted	  to	  itera<ons	  of	  interest	  

New	  



Time-series call-path profiling 

•  Instrumentation of the main loop to distinguish individual iterations 
•  Complete call tree with multiple metrics recorded for each iteration 
•  Challenge: storage requirements proportional to #iterations  

#include "epik_user.h" 
 
void initialize() {} 
void read_input() {} 
void do_work() {} 
void do_additional_work() {} 
void finish iteration() {} 
void write_output() {} 
 
int main() { 
  int iter; 
  PHASE_REGISTER(iter,”ITER”); 
  int t; 
  initialize(); 
  read_input(); 
  for(t=0; t<5; t++) { 
    PHASE_START(iter); 
    do_work(); 
    do_additional_work(); 
    finish_iteration(); 
    PHASE_END(iter); 
  } 
  write_output(); 
 
  return 0; 
} 
 

Call	  tree	   Process	  topology	  



Online compression 

•  Exploits similarities between 
iterations 
–  Summarizes similar iterations in a 

single iteration via clustering and 
structural comparisons 

•  On-line to save memory at run-time 
•  Process-local to 

–  Avoid communication 
–  Adjust to local temporal patterns 

•  The number of clusters never 
exceeds a predefined maximum 
–  Merging of the two closest ones 
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Zoltán	   Szebenyi	   et	   al.:	   Space-‐Efficient	   Time-‐
Series	   Cal l -‐Path	   Profil ing	   of	   Paral lel	  
Applica<ons.	   In	  Proc.	  of	   the	  SC09	  Conference,	  
Portland,	  Oregon,	  ACM,	  November	  2009.	  



Reconciling sampling and direct instrumentation 

•  Semantic compression needs direct 
instrumentation to capture communication metrics 
and to track the call path  

•  Direct instrumentation may result in excessive 
overhead 

•  New hybrid approach 
–  Applies low-overhead sampling to user code  
–  Intercepts MPI calls via direct instrumentation 
–  Relies on efficient stack unwinding  
–  Integrates measurements in statistically sound 

manner 

Zoltan	   Szebenyi	   et	   al.:	   Reconciling	   sampling	   and	   direct	   instrumenta<on	   for	  
unintrusive	  call-‐path	  profiling	  of	  MPI	  programs.	  In	  Proc.	  of	  IPDPS,	  Anchorage,	  AK,	  
USA.	  IEEE	  Computer	  Society,	  May	  2011.	  	  

Joint	  work	  with	  

DROPS	  
IGPM	  &	  SC,	  RWTH	  



Delay analysis 

•  Classification of waiting times into 
–  Direct vs. indirect 
–  Propagating vs. terminal 

•  Attributes costs of wait states to delay intervals 
–  Scalable through parallel forward and backward replay of traces 
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	  	  Indirect	  wai<ng	  <me	  	  

David	   Böhme	   et	   al.:	   Iden<fying	   the	   root	   causes	   of	   wait	   states	   in	   large-‐scale	   parallel	  
applica<ons.	  In	  Proc.	  of	  ICPP,	  San	  Diego,	  CA,	  IEEE	  Computer	  Society,	  September	  2010.	  	  
Best	  Paper	  Award	  	  



Zeus-MP/2 

•  Performance solving 3-D magnetohydrodynamic blast 
wave problem on 512 processes  

Computa<on	   Late-‐sender	  wait	  states	  
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197.3	  s	  

151.6	  s	  



Zeus-MP/2 delay analysis 

•  Subroutine “lorentz” has 
highest delay costs  

•  Delay originates from 
border of central region  

•  Cost distribution:  
–  15.9 % short-term  
–  84.1 % long-term  

Delay	  cost	  distribu<on	  
across	  process	  topology	  	  



Score-P measurement system 

Applica<on	  (MPI,	  OpenMP,	  accelerator,	  PGAS,	  hybrid)	  

	  
	  

Score-‐P	  measurement	  infrastructure	  
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Future work 

•  Integrate into production version 
–  Time-series compression 
–  Hybrid measurement technique 
–  Delay & critical-path analysis 

•  Further scalability improvements 
•  Emerging architectures and programming models 

–  Accelerators 

•  Interoperability with 3rd-party tools 
–  Common measurement library for several performance tools 

•  Support for performance modeling 
–  Performance extrapolation 
–  Multi-experiment analysis  



Virtual Institute – 
High Productivity Supercomputing 

The virtual institute in a… •  Partnership to develop advanced 
programming tools for complex 
simulation codes 

•  Goals 
•  Improve code quality  
•  Speed up development 

•  Activities 
•  Tool development and 

integration 
•  Training 
•  Support 
•  Academic workshops 

•  www.vi-hps.org 



Thank you! 


