
Performance Engineering in HPC
Application Development

Felix Wolf
27-06-2012

German Research School
for Simulation Sciences

•  Joint venture of
–  Forschungszentrum Jülich
–  RWTH Aachen University

•  Four research laboratories
–  Computational biophysics
–  Computational engineering
–  Computational materials science
–  Parallel programming

•  Education
–  M.Sc. in Simulation Sciences
–  Ph.D. program

•  About 50 scientific staff members

Aachen	

Jülich	

Forschungszentrum Jülich

Helmholtz Center
with ca. 4400
employees

Application areas
–  Health
–  Energy
–  Environment
–  Information

Key competencies
–  Physics
–  Supercomputing

Rheinisch-Westfälische
Technische Hochschule Aachen

•  260 institutes in nine faculties
•  Strong focus on engineering
•  > 200 M€ third-party funding

per year
•  Around 31,000 students are

enrolled in over 100 academic
programs

•  More than 5,000 are international
students from 120 different
countries

•  Cooperates with Jülich within the
Jülich Aachen Research Alliance (JARA)

University	 main	 building	

Euro-Par 2013 in Aachen

•  International conference series
–  Dedicated to parallel and

distributed computing

•  Wide spectrum of topics
–  Algorithms and theory
–  Software technology
–  Hardware-related issues

5	

Performance

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	
Performance	 ~	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Resources	 to	 solu<on	 	

Time	 Energy	

…	 and	 ul<mately	

Money	 Hardware	

Performance optimization pays off

Resource	 type	 	 Frac2on	 of	 TCO	

Hardware	 1/2	

Energy	 1/4	

Staff	 1/8	

Others	 1/8	

Example:	 HPC	 Service	 RWTH	 Aachen	
~300	 TFlops	 Bull/Intel	 cluster	
	
Total	 cost	 of	 ownership	 (TCO)	 per	 year:	 5.5	 M€	 	

Source:	 Bischof,	 an	 Mey,	 Iwainsky:	 Brainware	 for	 green	
HPC,	 	 Computer	 Science-‐Research	 and	 Development,	
Springer	

Tuning	 the	 	
workload	 by	 1%	 	
will	 “save”	 	
55k€	 per	 year	 	
~	 1	 FTE	

Objectives

•  Learn about basic performance measurement and
analysis methods and techniques for HPC applications

•  Get to know Scalasca, a scalable and portable
performance analysis tool

Outline

•  Principles of parallel performance
•  Performance analysis techniques
•  Practical performance analysis using Scalasca

Mo2va2on	

	
	
	
	
	
	
	
	
	

	
	

Source:	 Wikipedia	

Why parallelism at all?
Moore's Law is still in charge…

Mo2va2on	

	
	
	
	
	
	

	
	

Free lunch is over…

Parallelism

•  System/application level
–  Server throughput can be improved by spreading workload

across multiple processors or disks
–  Ability to add memory, processors, and disks is called scalability

•  Individual processor
–  Pipelining
–  Depends on the fact that many instructions do not depend on the

results of their immediate predecessors

•  Detailed digital design
–  Set-associative caches use multiple banks of memory
–  Carry-lookahead in modern ALUs

Amdahl’s Law for parallelism

•  Assumption – program can be parallelized on p
processors except for a sequential fraction f with

•  Speedup limited by sequential fraction

!

0 " f "1

!

Speedup(p) =
ts
t p

=
1

f +
1" f
p

<
1
f

Available parallelism

•  Overall speedup of 80 on 100 processors

!

80 =
1

f +
1" f
p

00250.f =

Law of Gustafson

•  Amdahl’s Law ignores increasing problem size
–  Parallelism often applied to calculate bigger problems instead of

calculating a given problem faster

•  Fraction of sequential part may be function of problem
size

•  Assumption
–  Sequential part has constant runtime
–  Parallel part has runtime

•  Speedup

fτ
)p,n(vτ

p
)p,n(
),n()p,n(Speedup n

vf

vf ⎯⎯ →⎯
+

+
=

∞→ττ
ττ 1

If	 	 parallel	 part	 can	 be	
perfectly	 parallelized	

Parallel efficiency

•  Metric for cost of parallelization (e.g., communication)
•  Without super-linear speedup

•  Super-linear speedup possible
–  Critical data structures may fit into the aggregate cache

p
)p(Speedup)p(Efficiency =

1≤)p(Efficiency

Scalability

•  Weak scaling
–  Ability to solve a larger input problem by using more resources

(here: processors)
–  Example: larger domain, more particles, higher resolution

•  Strong scaling
–  Ability to solve the same input problem faster as more resources

are used
–  Usually more challenging
–  Limited by Amdahl’s Law and communication demand

Serial vs. parallel performance

•  Serial programs
–  Cache behavior and ILP

•  Parallel programs
–  Amount of parallelism
–  Granularity of parallel tasks
–  Frequency and nature of inter-task communication
–  Frequency and nature of synchronization

•  Number of tasks that synchronize much higher → contention

Goals of performance analysis

•  Compare alternatives
–  Which configurations are best under which conditions?

•  Determine the impact of a feature
–  Before-and-after comparison

•  System tuning
–  Find parameters that produce best overall performance

•  Identify relative performance
–  Which program / algorithm is faster?

•  Performance debugging
–  Search for bottlenecks

•  Set expectations
–  Provide information for users

Analysis techniques (1)

•  Analytical modeling
–  Mathematical description of the system
–  Quick change of parameters
–  Often requires restrictive assumptions rarely met in practice

•  Low accuracy
–  Rapid solution
–  Key insights

•  Validation of simulations / measurements

•  Example
–  Memory delay

–  Parameters obtained from manufacturer or measurement

mcavg thhtt)1(−+=

Analysis techniques (2)

•  Simulation
–  Program written to model important features of the system being

analyzed
–  Can be easily modified to study the impact of changes
–  Cost

•  Writing the program
•  Running the program

–  Impossible to model every small detail
•  Simulation refers to “ideal” system
•  Sometimes low accuracy

•  Example
–  Cache simulator
–  Parameters: size, block size, associativity, relative cache and

memory delays

Analysis techniques (3)

•  Measurement
–  No simplifying assumptions
–  Highest credibility
–  Information only on specific system being measured
–  Harder to change system parameters in a real system
–  Difficult and time consuming
–  Need for software tools

•  Should be used in conjunction with modeling
–  Can aid the development of performance models
–  Performance models set expectations against which

measurements can be compared

Comparison of analysis techniques

	 	 Measurement	 	 	 	 	 	 	 	 	 	 –	 	 	 	 	 	 	 	 	 	 	 Simula<on	 	 	 	 	 	 	 –	 	 	 	 	 	 	 Performance	 model	 	 	 	 	

Number	 of	 parameters	

Model	 error	

Based	 on	 SC’11	 paper	 from	 Torsten	 Hoefler	 et	 al.	

	 	 	

Metrics of performance

•  What can be measured?
–  A count of how many times an event occurs

•  E.g., Number of input / output requests
–  The duration of some time interval

•  E.g., duration of these requests
–  The size of some parameter

•  Number of bytes transmitted or stored

•  Derived metrics
–  E.g., rates / throughput
–  Needed for normalization

Primary performance metrics

•  Execution time, response time
–  Time between start and completion of a program or event
–  Only consistent and reliable measure of performance
–  Wall-clock time vs. CPU time

•  Throughput
–  Total amount of work done in a given time

•  Performance =

•  Basic principle: reproducibility
•  Problem: execution time is slightly non-deterministic

–  Use mean or minimum of several runs

1	

Execu<on	 <me	

	 	 	

Alternative performance metrics

•  Clock rate
•  Instructions executed

per second
•  FLOPS

–  Floating-point operations per second

•  Benchmarks
–  Standard test program(s)
–  Standardized methodology
–  E.g., SPEC, Linpack

•  QUIPS / HINT [Gustafson and Snell, 95]
–  Quality improvements per second
–  Quality of solution instead of effort to reach it

“Math” operations?
 HW operations?

 HW instructions?
 Single or double

precision?

Peak performance

•  Peak performance is the performance a computer is
guaranteed not to exceed

Source:	 Hennessy,	 Paferson:	 Computer	 Architecture,	 4th	 edi<on,	 Morgan	 Kaufmann	

64	 processors	

Performance tuning cycle

Instrumenta<on	

Measurement	

Analysis	

Presenta<on	

Op<miza<on	

Instrumentation techniques

•  Direct instrumentation
–  Measurement code is inserted at certain points in the program

•  Example: function entry/exit, dispatch or receipt of messages
–  Can be done manually or automatically
–  Advantage: captures all instrumented events
–  Disadvantage: overhead more difficult to control

•  Sampling (statistical approach)
–  Based on the assumption that a subset of a population being

examined is representative for the whole population
–  Measurement performed only in certain intervals - usually

implemented with timer interrupt
–  Advantage: overhead can be easily controlled
–  Disadvantage: incomplete information, harder to access program

state

Measurement

Typical performance data include
•  Counts
•  Durations

•  Communication cost
•  Synchronization cost
•  IO accesses
•  System calls
•  Hardware events

inclusive	
dura<on	

exclusive	
dura<on	

int foo()
{
 int a;

 a = a + 1;

 bar();

 a = a + 1;
}
	

Critical issues

•  Accuracy
–  Perturbation

•  Measurement alters program behavior
•  E.g., memory access pattern

–  Intrusion overhead
•  Measurement itself needs time and thus lowers performance

–  Accuracy of timers, counters
•  Granularity

–  How many measurements
•  Pitfall: short but frequently executed functions

–  How much information / work during each measurement

•  Tradeoff
–  Accuracy ⇔ expressiveness of data

Single-node performance

•  Huge gap between CPU and memory speed

•  Internal operation of a microprocessor potentially complex
–  Pipelining
–  Out-of-order instruction issuing
–  Branch prediction
–  Non-blocking caches

Source:	 Hennessy,	 Paferson:	 Computer	
Architecture,	 4th	 edi<on,	 Morgan	
Kaufmann	

Hardware counters

•  Small set of registers that count events
•  Events are signals related to the processor’s internal

function
•  Original purpose: design verification and performance

debugging for microprocessors
•  Idea: use this information to analyze the performance

behavior of an application as opposed to a CPU

Typical hardware counters

Cycle	 count
Instruc<on	 count All	 instruc<ons	

Floa<ng	 point	
Integer	
Load	 /	 store

Branches Taken	 /	 not	 taken	
Mispredic<ons

Pipeline	 stalls	 due	 to Memory	 subsystem	
Resource	 conflicts

Cache I/D	 cache	 misses	 for	
different	 levels	
Invalida<ons

TLB Misses	
Invalida<ons

Profiling

•  Mapping of aggregated information
–  Time
–  Counts

•  Calls
•  Hardware counters

•  Onto program and system entities
–  Functions, loops, call paths
–  Processes, threads

Call-path profiling

•  Behavior of a function may depend
on caller (i.e., parameters)

•  Flat function profile often not
sufficient

•  How to determine call path at
runtime?
–  Runtime stack walk
–  Maintain shadow stack

•  Requires tracking of function calls

main()
{
 A();
 B();
}

A() B()
{ {
 X(); Y();
 Y(); }
}

main	

A	

B	

X	

Y	

Y	

Event tracing

Section on
display

•  Typical events
–  Entering and leaving a function
–  Sending and receiving a message

Why tracing?

•  High level of detail
•  Allows in-depth post-mortem analysis of program behavior

–  Time-line visualization
–  Automatic pattern search

•  Identification of wait states
Discovery of
wait states

 zoom in

Obstacle: trace size

•  Problem: width and length of event trace

Number of processes

t

W
id

th

Execution time

t

t

long

short

Event frequency

t

t

high

low

	 	 	

Tracing vs. profiling

•  Advantages of tracing
–  Event traces preserve the temporal and spatial relationships

among individual events
–  Allows reconstruction of dynamic behavior of application

on any required abstraction level
–  Most general measurement technique

•  Profile data can be constructed from event traces

•  Disadvantages
–  Traces can become very large
–  Writing events to a file at runtime can cause perturbation
–  Writing tracing software is complicated

•  Event buffering, clock synchronization, …

•  Scalable performance-analysis toolset for parallel codes
–  Focus on communication & synchronization

•  Integrated performance analysis process
–  Performance overview on call-path level via call-path profiling
–  In-depth study of application behavior via event tracing

•  Supported programming models
–  MPI-1, MPI-2 one-sided communication
–  OpenMP (basic features)

•  Available for all major HPC platforms

Joint project of

The team

www.scalasca.org

45	

Mul<-‐page	 ar<cle	 	
on	 Scalasca	

Installations and users
•  Companies

–  Bull (France)
–  Dassault Aviation (France)
–  EDF (France)
–  Efield Solutions (Sweden)
–  GNS (Germany)
–  IBM (France, Germany)
–  INTES (Germany)
–  MAGMA (Germany)
–  RECOM (Germany)
–  SciLab (France)
–  Shell (Netherlands)
–  SiCortex (USA)
–  Sun Microsystems (USA, Singapore, India)
–  Qontix (UK)

•  Research / supercomputing centers
–  Argonne National Laboratory (USA)
–  Barcelona Supercomputing Center (Spain)
–  Bulgarian Supercomputing Centre (Bulgaria)
–  CERFACS (France)
–  Centre Informatique National de l’Enseignement Supérieur (France)
–  Commissariat à l'énergie atomique (France)
–  Computation-based Science and Technology Research Center (Cyprus)
–  CASPUR (Italy)
–  CINECA (Italy)
–  Deutsches Klimarechenzentrum (Germany)
–  Deutsches Zentrum für Luft- und Raumfahrt (Germany)
–  Edinburgh Parallel Computing Centre (UK)
–  Federal Office of Meteorology and Climatology (Switzerland)
–  Flanders ExaScience Lab (Belgium)
–  Forschungszentrum Jülich (Germany)
–  IT Center for Science (Finland)
–  High Performance Computing Center Stuttgart (Germany)
–  Irish Centre for High-End Computing (Ireland)
–  Institut du développement et des ressources en informatique scientifique

(France)
–  Karlsruher Institut für Technologie (Germany)
–  Lawrence Livermore National Laboratory (USA)
–  Leibniz-Rechenzentrum (Germany)
–  National Authority For Remote Sensing & Space Science (Egypt)
–  National Center for Atmospheric Research (USA)

•  Research/supercomputing centers (cont.)
–  National Center for Supercomputing Applications (USA)
–  National Laboratory for High Performance Computing (Chile)
–  Norddeutscher Verbund zur Förderung des Hoch- und

Höchstleistungsrechnens (Germany)
–  Oak Ridge National Laboratory (USA)
–  PDC Center for High Performance Computing (Sweden)
–  Pittsburgh Supercomputing Center (USA)
–  Potsdam-Institut für Klimafolgenforschung (Germany)
–  Rechenzentrum Garching (Germany)
–  SARA Computing and Networking Services (Netherlands)
–  Shanghai Supercomputer Center (China)
–  Swiss National Supercomputing Center (Switzerland)
–  Texas Advanced Computing Center (USA)
–  Texas A&M Supercomputing Facility (USA)
–  Très Grand Centre de calcul (France)

•  Universities
–  École Centrale Paris (France)
–  École Polytechnique Fédérale de Lausanne (Switzerland)
–  Institut polytechnique de Grenoble (France)
–  King Abdullah University of Science and Technology (Saudi Arabia)
–  Lund University (Sweden)
–  Lomonosov Moscow State University (Russia)
–  Michigan State University (USA)
–  Norwegian University of Science & Technology (Norway)
–  Politechnico di Milano (Italy)
–  Rensselaer Polytechnic Institute (USA)
–  Rheinisch-Westfälische Technische Hochschule Aachen (Germany)
–  Technische Universität Dresden (Germany)
–  Università degli Studi di Genova (Italy)
–  Universität Basel (Switzwerland)
–  Universitat Autònoma de Barcelona (Spain)
–  Université de Versailles St-Quentin-en-Yvelines (France)
–  University of Graz (Austria)
–  University of Oregon (USA)
–  University of Oslo (Norway)
–  University of Paderborn (Germany)
–  University of Tennessee (USA)
–  University of Tsukuba (Japan)
–  University of Warsaw (Poland)

•  9 defense-related computing centers

Which	 problem?	 Where	 in	 the	
program?	

Which	
process?	

Parallel	 wait-‐
state	 search	

Summary	
report	

Wait-‐state	
report	

Instr.	
target	
applica<on	 	

Measurement	
library	
	

HWC	 Local	 event	
traces	

Op<mized	 measurement	 configura<on	

Instrumenter	
compiler	 /	 linker	

Instrumented	
executable	

Source	
modules	

Re
po

rt
	 	

po
st
pr
oc
es
sin

g	

Wait-state analysis

•  Classification
•  Quantification

<me	

pr
oc
es
s	

(a)	 Late	 Sender	

<me	

pr
oc
es
s	

(c)	 Late	 Receiver	
<me	

pr
oc
es
s	

(b)	 Late	 Sender	 /	 Wrong	 Order	

XNS CFD simulation application

•  Computational fluid dynamics code
–  Developed by Chair for Computational Analysis of Technical

Systems, RWTH Aachen University
–  Finite-element method on unstructured 3D meshes
–  Parallel implementation based on message passing
–  >40,000 lines of Fortran & C
–  DeBakey blood pump test case

•  Scalability of original version limited <1024 CPUs

Par<<oned	 finite-‐element	 mesh	

Call-path profile: Computation

Execu<on	
<me	 excl.	
MPI	 comm	

Just	 30%	 of	
simula<on	

Widely	
spread	
in	 code	

Widely	
spread	
in	 code	

Widely	
spread	
in	 code	

Call-path profile: P2P messaging

P2P	 comm	
66%	 of	

simula<on	 Primarily	
in	 scafer	
&	 gather	

Primarily	
in	 scafer	
&	 gather	

MPI	 point-‐	
to-‐point	 	
communic-‐	
a<on	 <me	

Call-path profile: P2P sync. ops.

Masses	 of	
P2P	 sync.	
opera<ons	

Processes	
all	 equally	
responsible	

Point-‐to-‐	
point	 msgs	
w/o	 data	

Trace analysis: Late sender

Half	 of	 the	
send	 <me	 	 	
is	 wai<ng	

Significant	
process	
imbalance	

Wait	 <me	
of	 receivers	
blocked	 for	
late	 sender	

XNS scalability remediation

•  Review of original XNS
–  Computation is well balanced
–  Real communication is very imbalanced
–  Huge amounts of P2P synchronisations

•  Grow exponentially with number of processes

•  Elimination of redundant messages
–  Relevant neighbor partitions known in advance from static mesh

partitioning
–  Most transfers still required at small scale

while connectivity is relatively dense
–  Growing benefits at larger scales (>512)

After removal of redundant messages

Original	
performance	
peaked	 at	 	
132	 ts/hr	

Revised	
version	
con<nues	
to	 scale	

XNS wait-state analysis of tuned version

MAGMAfill by MAGMASOFT® GmbH

•  Simulates mold-filling in
casting processes

•  Scalasca used
–  To identify communication

bottleneck
–  To compare alternatives using

performance algebra utility

•  23% overall runtime
improvement

INDEED by GNS® mbh

•  Finite-element code for the simulation of
material-forming processes

–  Focus on creation of element-stiffness matrix

•  Tool workflow
–  Scalasca identified serialization in critical

section as bottleneck
–  In-depth analysis using Vampir

•  Speedup of 30-40% after optimization

Scalability in terms of the number of cores

•  Application study of ASCI
Sweep3D benchmark

•  Identified MPI waiting time
correlating with computational
imbalance

•  Measurements & analyses
demonstrated on
–  Jaguar with up to 192k cores
–  Jugene with up to 288k cores

1,024 2,048 4,096 8,192 16,384 32,768 65,636 131,072 262,144
Processes

1

10

100

1000

Ti
m

e
[s

]

Measured execution
 - Computation
 - MPI processing
 - MPI waiting

Brian	 J.N.	 Wylie	 et	 al.:	 Large-‐scale	
performance	 analysis	 of	 Sweep3D	 with	
the	 Sca lasca	 too l se t .	 Para l l e l	
Processing	 Lefers,	 20(4):397-‐414,	
December	 2010.	

Jaguar,	 MK	 =	 10	 (default)	

Computa<on	

Performance dynamics

•  Most simulation codes work iteratively
•  Growing complexity of codes makes performance

behavior more dynamic – even in the absence of failures
–  Periodic extra activities
–  Adaptation to changing state of computation

•  External influence (e.g., dynamic reconfiguration)

129.tera_t	

MPI	 point-‐to-‐point	 MPI	 point-‐to-‐point	 Execu<on	

 P2P communication in SPEC MPI 2007 suite

107.leslie3d	 113.GemsFDTD	 115.fds4	 121.pop2	

126.leslie3d	 128.GAPgeofem	 129.tera_t	 127.wrf2	

130.socorro	 132.zeusmp2	 137.lu	

Scalasca’s approach to performance dynamics

Overview	

•  Capture	 overview	 of	 performance	 dynamics	 via	 <me-‐series	
profiling	
•  Time	 and	 count-‐based	 metrics	

Focus	
•  Iden<fy	 pivotal	 itera<ons	 -‐	 if	 reproducible	

In-‐depth	
analysis	

•  In-‐depth	 analysis	 of	 these	 itera<ons	 via	 tracing	
•  Analysis	 of	 wait-‐state	 forma<on	
•  Cri<cal-‐path	 analysis	
•  Tracing	 restricted	 to	 itera<ons	 of	 interest	

New	

Time-series call-path profiling

•  Instrumentation of the main loop to distinguish individual iterations
•  Complete call tree with multiple metrics recorded for each iteration
•  Challenge: storage requirements proportional to #iterations

#include "epik_user.h"

void initialize() {}
void read_input() {}
void do_work() {}
void do_additional_work() {}
void finish iteration() {}
void write_output() {}

int main() {
 int iter;
 PHASE_REGISTER(iter,”ITER”);
 int t;
 initialize();
 read_input();
 for(t=0; t<5; t++) {
 PHASE_START(iter);
 do_work();
 do_additional_work();
 finish_iteration();
 PHASE_END(iter);
 }
 write_output();

 return 0;
}

Call	 tree	 Process	 topology	

Online compression

•  Exploits similarities between
iterations
–  Summarizes similar iterations in a

single iteration via clustering and
structural comparisons

•  On-line to save memory at run-time
•  Process-local to

–  Avoid communication
–  Adjust to local temporal patterns

•  The number of clusters never
exceeds a predefined maximum
–  Merging of the two closest ones

0 100 200 300 400 500 600 700
Iteration #

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
[s

]

0 100 200 300 400 500 600 700
Iteration #

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
[s

]

147.l2wrf2	 MPI	 P2P	 <me,	 original	

compressed,	 64	 clusters	

0 2500 5000 7500 10000 12500 15000
Iteration #

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e
[s

]

0 2500 5000 7500 10000 12500 15000
Iteration #

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

Ti
m

e
[s

]

compressed,	 64	 clusters	

143.dleslie	 MPI	 P2P	 <me,	 original	

Zoltán	 Szebenyi	 et	 al.:	 Space-‐Efficient	 Time-‐
Series	 Cal l -‐Path	 Profil ing	 of	 Paral lel	
Applica<ons.	 In	 Proc.	 of	 the	 SC09	 Conference,	
Portland,	 Oregon,	 ACM,	 November	 2009.	

Reconciling sampling and direct instrumentation

•  Semantic compression needs direct
instrumentation to capture communication metrics
and to track the call path

•  Direct instrumentation may result in excessive
overhead

•  New hybrid approach
–  Applies low-overhead sampling to user code
–  Intercepts MPI calls via direct instrumentation
–  Relies on efficient stack unwinding
–  Integrates measurements in statistically sound

manner

Zoltan	 Szebenyi	 et	 al.:	 Reconciling	 sampling	 and	 direct	 instrumenta<on	 for	
unintrusive	 call-‐path	 profiling	 of	 MPI	 programs.	 In	 Proc.	 of	 IPDPS,	 Anchorage,	 AK,	
USA.	 IEEE	 Computer	 Society,	 May	 2011.	 	

Joint	 work	 with	

DROPS	
IGPM	 &	 SC,	 RWTH	

Delay analysis

•  Classification of waiting times into
–  Direct vs. indirect
–  Propagating vs. terminal

•  Attributes costs of wait states to delay intervals
–  Scalable through parallel forward and backward replay of traces

<me	
pr
oc
es
s	

Delay	

Direct	 wai<ng	 <me	

	 	 Indirect	 wai<ng	 <me	 	

David	 Böhme	 et	 al.:	 Iden<fying	 the	 root	 causes	 of	 wait	 states	 in	 large-‐scale	 parallel	
applica<ons.	 In	 Proc.	 of	 ICPP,	 San	 Diego,	 CA,	 IEEE	 Computer	 Society,	 September	 2010.	 	
Best	 Paper	 Award	 	

Zeus-MP/2

•  Performance solving 3-D magnetohydrodynamic blast
wave problem on 512 processes

Computa<on	 Late-‐sender	 wait	 states	

47.1	 s	

0.62	 s	

197.3	 s	

151.6	 s	

Zeus-MP/2 delay analysis

•  Subroutine “lorentz” has
highest delay costs

•  Delay originates from
border of central region

•  Cost distribution:
–  15.9 % short-term
–  84.1 % long-term

Delay	 cost	 distribu<on	
across	 process	 topology	 	

Score-P measurement system

Applica<on	 (MPI,	 OpenMP,	 accelerator,	 PGAS,	 hybrid)	

	
	

Score-‐P	 measurement	 infrastructure	

Online	 interface	 Profiling	 Tracing	

	
Interac<ve	

trace	
explora<on	

Vampir	
	
	

Performance	
dynamics	 &	
wait	 states	

	

Scalasca	 	
Automa<c	
online	

classifica<on	

Periscope	 	
Performance	
data	 base	 &	
data	 mining	

TAU	

Future work

•  Integrate into production version
–  Time-series compression
–  Hybrid measurement technique
–  Delay & critical-path analysis

•  Further scalability improvements
•  Emerging architectures and programming models

–  Accelerators

•  Interoperability with 3rd-party tools
–  Common measurement library for several performance tools

•  Support for performance modeling
–  Performance extrapolation
–  Multi-experiment analysis

Virtual Institute –
High Productivity Supercomputing

The virtual institute in a… •  Partnership to develop advanced
programming tools for complex
simulation codes

•  Goals
•  Improve code quality
•  Speed up development

•  Activities
•  Tool development and

integration
•  Training
•  Support
•  Academic workshops

•  www.vi-hps.org

Thank you!

