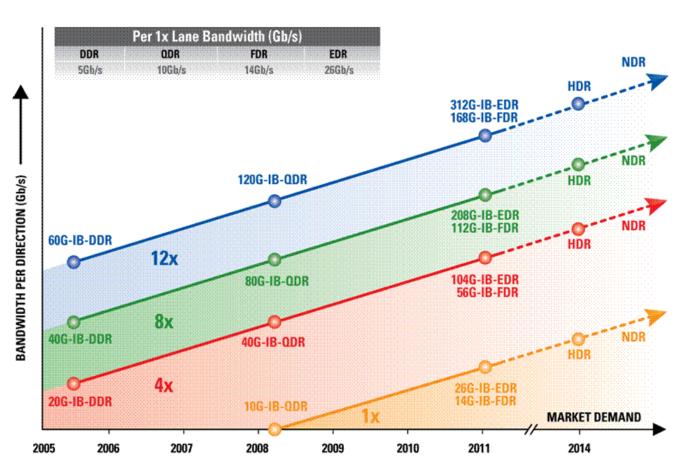

Mellanox Infiniband Foundations

InfiniBand Trade Association (IBTA)

- Founded in 1999
- Actively markets and promotes InfiniBand from an industry perspective through public relations engagements, developer conferences and workshops
- Steering Committee Members:

InfiniBand is a Switch Fabric Architecture

- Interconnect technology connecting CPUs and I/O
- Super high performance
 - High bandwidth (starting at 10Gbps and up to 60Gbps) Lots of head room!
 - Low latency Fast application response across the cluster.
 - Low CPU Utilization with RDMA (Remote Direct Memory Access) Unlike Ethernet, communication bypasses the OS and the CPU's.


- Single port solution for all LAN, SAN, and application communication
- High reliability Subnet Manger with redundancy
- InfiniBand is a technology that was designed for large scale grids and clusters

First industry standard high speed interconnect!

InfiniBand Roadmap

SDR - Single Data Rate

DDR - Double Data Rate

QDR - Quad Data Rate

FDR - Fourteen Data Rate

EDR - Enhanced Data Rate

HDR - High Data Rate

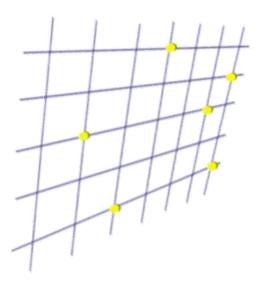
NDR - Next Data Rate

InfiniBand Resources

 InfiniBand software is developed under OpenFabrics Open Source Alliance

http://www.openfabrics.org/index.html

InfiniBand standard is developed by the InfiniBand Trade
 http://www.infinibandta.org/home

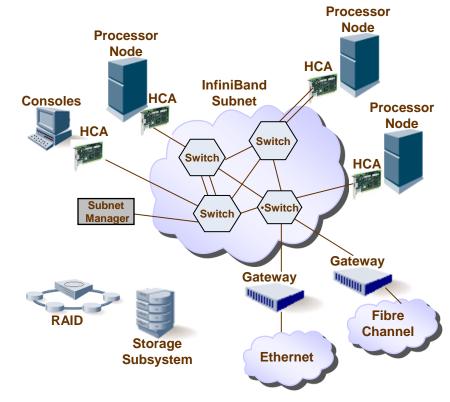


High Performance Grids

- Use off-the-shelf components
- Based on open standards
- Manageable
- Scalable

Provide access to storage systems and external networks

What is InfiniBand?


- Industry standard defined by the InfiniBand Trade Association
 - Originated in 1999
- InfiniBand[™] specification defines an input/output architecture used to interconnect servers, communications infrastructure equipment, storage and embedded systems
- InfiniBand is a pervasive, low-latency, high-bandwidth interconnect which requires low processing overhead and is ideal to carry multiple traffic types (clustering, communications, storage, management) over a single connection.
- As a mature and field-proven technology, InfiniBand is used in thousands of data centers, high-performance compute clusters and embedded applications that scale from small scale to large scale

The InfiniBand Architecture

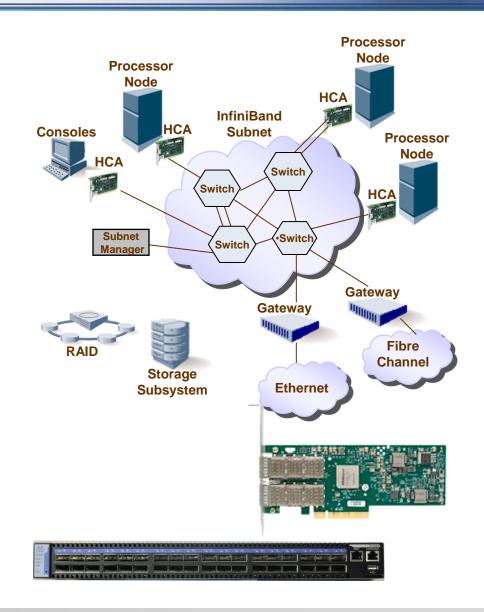
- Industry standard defined by the InfiniBand Trade Association
- Defines System Area Network architecture
 - Comprehensive specification: from physical to applications
- Architecture supports
 - Host Channel Adapters (HCA)
 - Switches
 - Routers
- Facilitated HW design for
 - · Low latency / high bandwidth
 - Transport offload

InfiniBand Components Overview

Host Channel Adapter (HCA)

 Device that terminates an IB link and executes transport-level functions and support the verbs interface

Switch


 A device that routes packets from one link to another of the same IB Subnet

Router

 A device that transports packets between different IBA subnets

Bridge

InfiniBand to Ethernet

Host Channel Adapters (HCA)

- Equivalent to a NIC (Ethernet)
 - GUID (Global Unique ID = MAC)
- Converts PCI to InfiniBand
- CPU offload of transport operations
- End-to-end QoS and congestion control
- Communicate via Queue Pairs (QPs)
- HCA Options:

Single Data Rate 2.5GB/S * 4 = 10

Double Data Rate 5 GB/S * 4 = 20

Quadruple Data Rate 10GB/S * 4 = 40

Fourteen Data Rate 14 Gb/s * 4 = 56

• FDR 10 10Gb/s *4 = 40

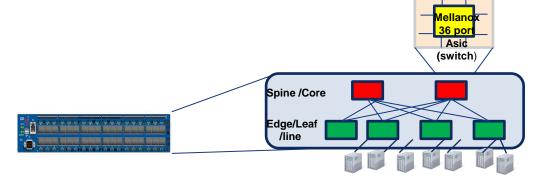
HCA Physical Address Global Unique Identifier (GUID)

Host Channel Adapters (HCA's) & all Switches require GUID & LID addresses

GUID - 64 bit

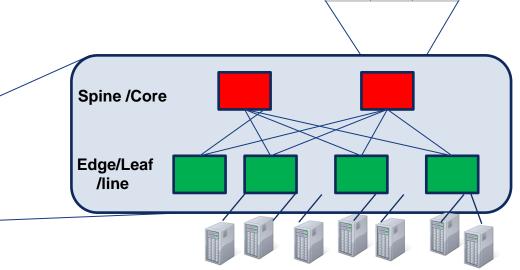
Global Unique Identifier "Like a Ethernet MAC address"

- Assigned by IB Vendor
 - Persistent through reboots


3 Types of Guids per ASIC

- Node = Is meant to identify the HCA as a entity
- Port = Identifies the Port as a port
- System = Allows to combine multiple GUIDS creating one entity

The IB Fabric Basic Building Block



- A single 36 ports IB switch chip, is the Basic Block for every IB switch Module
- We create A multiple ports switching Module using Multiple chips
- In this Example we create 72 ports switch, using 6 identical chips
 - 4 chips will function as lines
 - 2 chips will function as core core

Mellanox 36 port

Asic (switch

IB Fabric L2 Switching Addressing Local Identifier (LID)

Host Channel Adapters (HCA's) & Switches all require GUID & LID addresses

LID - 16 bit

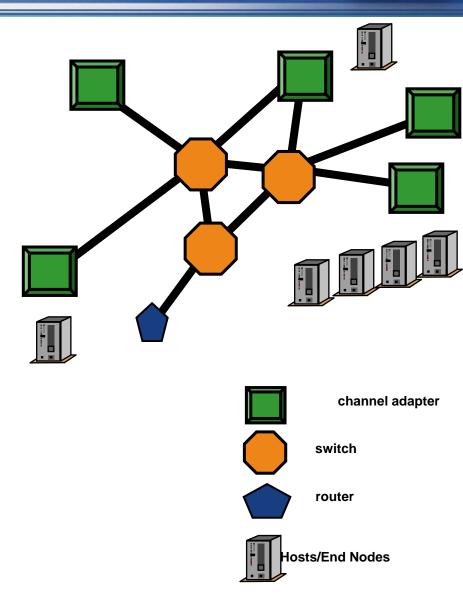
Local Identifier "Like a dynamic IP address"

- Assigned by the SM when port becomes active
- Not Persistent through reboots
- Address ranges

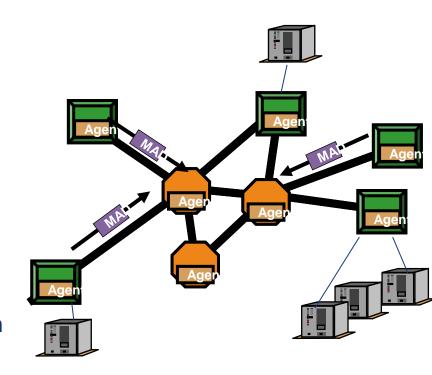
0x0000 = reserved

0x0001 = 0xBFFF = Unicast

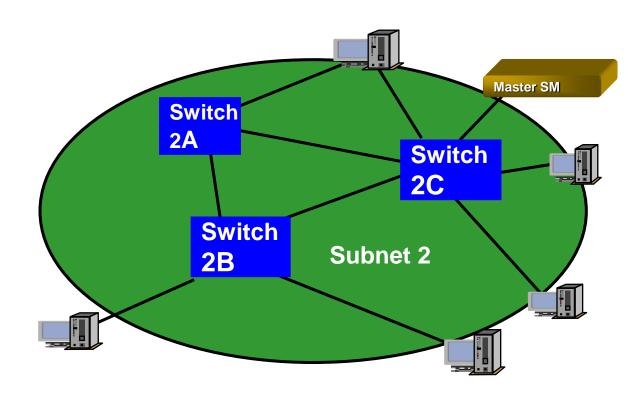
0xc001 = 0xFFFE = Multicast


0xFFFF = Reserved for special use

Refresh - What is a Fabric ?

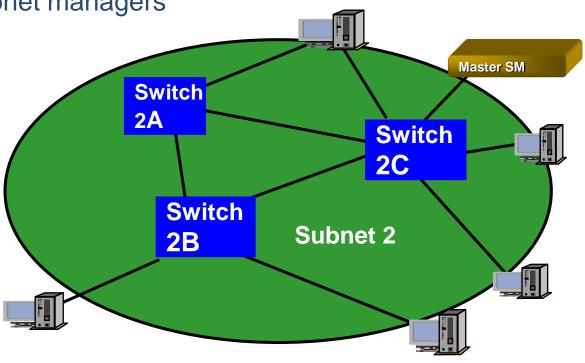

- Switching fabric is the combination of hardware and software that moves data coming in to a network <u>node</u> out by the correct port (door) to the next node in the network.
- Switching fabric includes the switching units (individual boxes) in a node, the integrated circuits that they contain, and the programming that allows switching paths to be controlled. The switching fabric is independent of the <u>bus</u> technology and

Basic Management Concepts


- Node: any managed entity Endnode, switch, router
- Manager: active entity; sources commands and queries. There are few managers.
- Agent: passive (mostly) entity, responds to managers (but can source traps). Many agents.
- Management Datagram (MAD): standard message format for manager—agent communication. Carried in an unreliable datagram (UD).
- ✓ All data formats & actions are defined solely in terms of MAD content. Implementation not defined: hardware, firmware, software, whatever...

Subnet Model

- Subnet = HCAs and interconnected through switches
- Each subnet has its own LID space
- Each subnet has at least one SM and exactly one (logical) Master SM


16

Objectives of Subnet Management

- Initialization and configuration of the subnet elements
- Establishing paths through the subnet
- Fault isolation
- Continue these activities during topology changes

Prevent unauthorized subnet managers

17

Node & Switch Main identifiers

Traffic

Packets

VL 0-7

IB Port Basic Identifiers

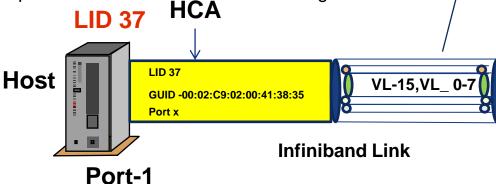
- Port number
- Host Channel Adapter HCA (IB "NIC")
- Global universal id GUID 64 bit (like mac) ex. 00:02:C9:02:00:41:38:30
 - Each 36 ports "basic " switch has its own switch & system GUID
 - All ports belong to the same "basic " switch will share the switch GUID
- Local Identifier LID
- Virtual Lane –VL Used to separate different Bandwidth & Qq/s using same physical port

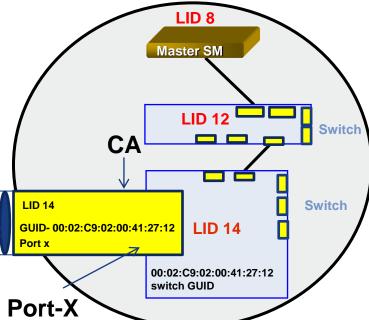
Link

Traffic

Packets

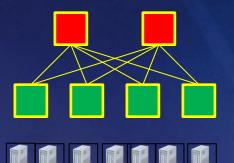
VL 0-7


Control


Packets

Transmitted

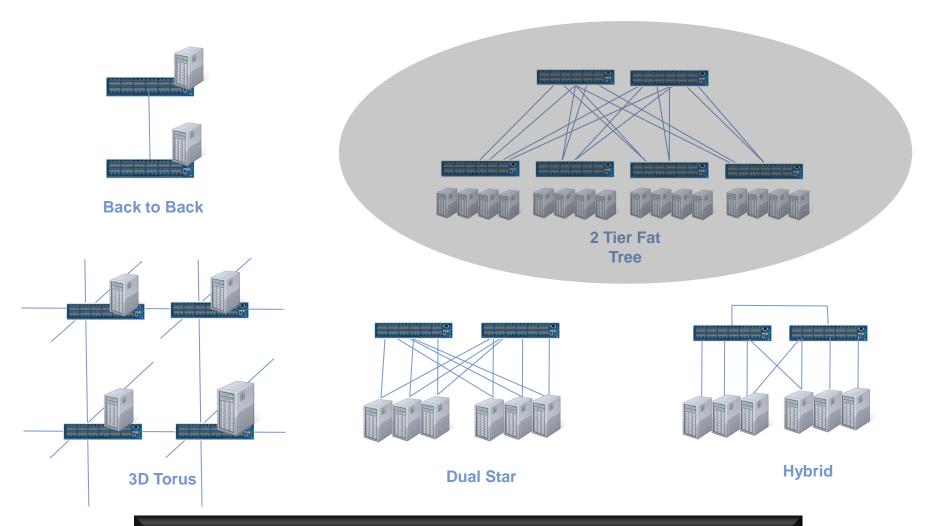
LID


- Local Identifier that is assigned to any IB device by the SM and used for packets "routing" within an IB fabric.
- All ports of the same ASIC unit are using the Same LID

mux

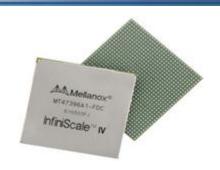
InfiniBand Fabric Topologies

Spine / Core Switches


Leaf/Edge/Line Switches

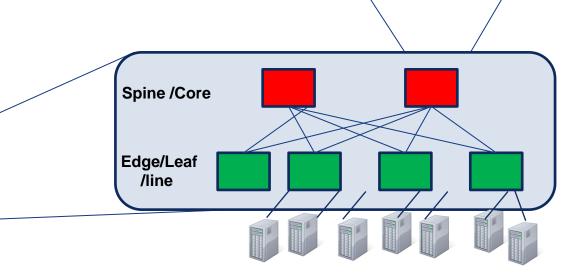
HOSTS/End Nodes

InfiniBand Fabric commonly used Topologies



Modular switches are based on fat tree architecture

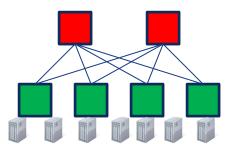
The IB Fabric Basic Building Block



- A single 36 ports IB switch chip, is the Basic Block for every IB switch Module
- We create A multiple ports switching Module using Multiple chips
- In this Example we create 72 ports switch, using 6 identical chips
 - 4 chips will function as lines
 - 2 chips will function as core core

Mellanox 36 port

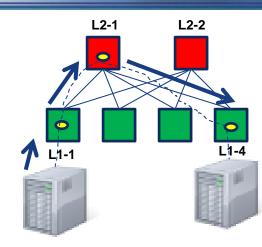
Asic (switch

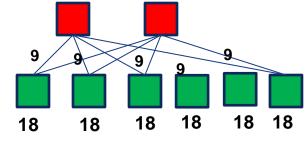


CLOS Topology

- Pyramid Shape Topology
- The switches at the Top of the Pyramid are called Spines/Core

The Core/Spine switches are Interconnected to the Other switch Environments



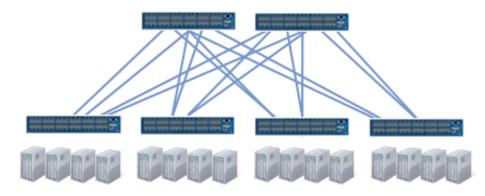

- The switches at the Bottom of the Pyramid are called Leafs/Lines
 - The Leaf/Lines/Edge are connected to the Fabric Nodes/Hosts
- In A NON Blocking CLOS Fabric there are *Equal Number* of External and internal connections
- External connections :
 - The connections Between the Core and the Line switches
- Internal Connections
 - The Connected of Hosts to the Line Switches
- In a non Blocking Fabric there is always a Balanced Bidirectional Bandwidth
- In Case the Number of Internal Connections is Higher we have Blocking Configuration

CLOS - 3

- The Topology detailed here is called CLOS 3
- The path between source to Destination includes 3 HOPS
- Example a session between A to B
 - One Hop from A to switch L1-1
 - Next Hop from switch L1-1 to switch L2-1
 - Last Hop from L2-1 to L1-4
- In this Example we can see 108
 Non blocked Fabric
 - 108 Hosts are connected to the Line switches
 - 108 Links connect between the Line Switches
 To the Core witches to enable
 Non Blocking Interconnection of the Line switches

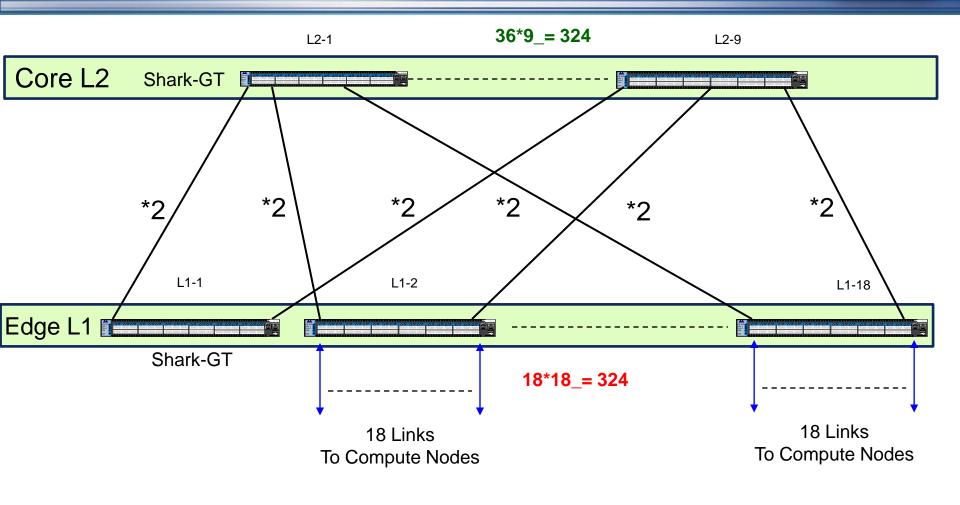
CLOS - 5

- The Topology detailed here is called CLOS 5
- The path between source to Destination includes 5 HOPS
- Example a session between A to B
 - 1.One Hop from A to switch L1-1
 - 2.Next Hop from switch L1-1 to switch L2-1
 - 3.Next Hop from L2-1 to L3-1
 - 4.Next Hop from L3-1 to L2-4
 - 5.Next Hop from L2-4 to L1-8



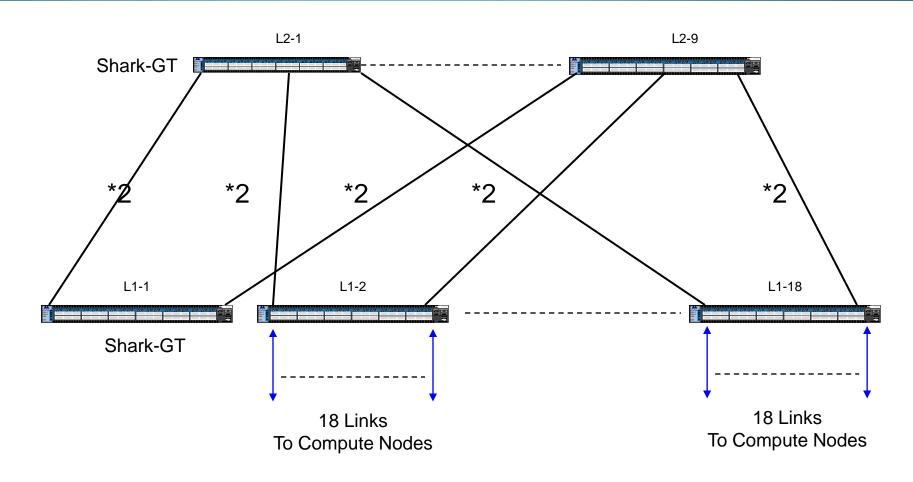
Cluster Planning – FAT tree tips

- In most cases use same amount of links to connect L1 switch to all L2
- Port used in all L2 switches for the above connectivity should be identical
- It is advised to have nodes connected only to L1
- To be able to use FAT tree routing algorithm (ftree) fabric should be symmetrical and all switches in L1 should be populated
- Cluster configuration tool can be found on the Mellanox website:


http://www.mellanox.com/clusterconfig/

2 Tier Clos

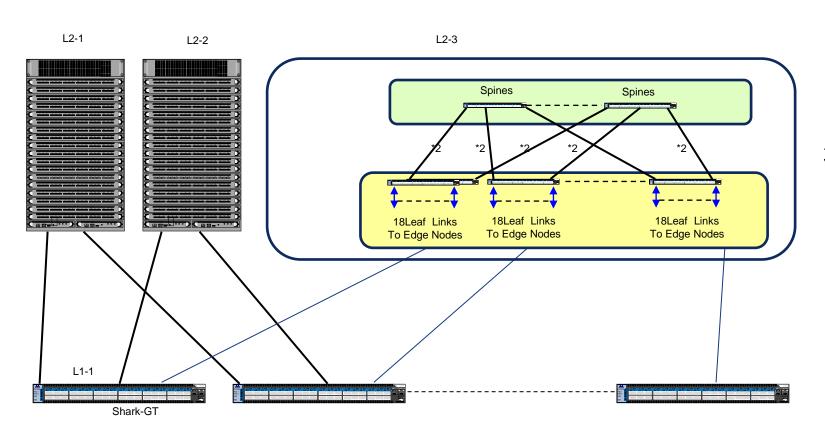
324 ports Switch internal Fabric topology



2 x 4X QDR Uplinks

1 x 4X QDR Uplinks

324 Node Full CBB using Shark-GTs



2 x 4X QDR Uplinks

1 x 4X QDR Uplinks

How do we create 972 HOSTS Fabric with 5300 Boxes?

CORE 3* 5300 972

Edge 54*5035 972

6 x 4X QDR Uplinks

Subnet Manager & Fabric configuration Process

- 1. Physical subnet establishment
- 2. Subnet discovery
- 3. Information gathering
- 4. LID Assignment
- 5. Path Establishment
- 6. Port configuration
- 7. Switch configuration
- 8. Subnet activation

Physical Fabric Establish

Subnet Discovery

Information Gathering

Lid Assignment

Path Establishment

Port Configuration

Switch Configuration

Subnet Activation

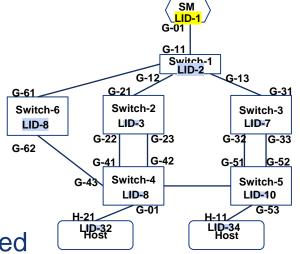
Subnet Manager (SM) Rules & Roles

Every subnet must have at least one

- Manages all elements in the IB fabric
- Discover subnet topology
- Assign LIDs to devices
- Calculate and program switch chip forwarding tables (LFT pathing)
- Monitor changes in subnet

Implemented anywhere in the fabric

- Node, Switch, Specialized device


No more than one <u>active</u> SM allowed

- 1 Active (Master) and remaining are Standby (HA)

Fabric Discovery

- 1. The **SM** wakes up and starts the Fabric Discovery process
- 2. The SM starts "conversation "with every node, over the infinband link it is connected to . in this stage the discovery stage, the SM collects:
 - Switch Information
 - Host Information
- 3. Any switch which is already discovered, will be used as a gate for the SM, for further discovery of all this switch links and the switches it is connected to, known also as its neighbors.
- 4. The SM management dialog:
 - Uses the SMP Subnet Manager Packets
 - All management packets are handled via Virtual Lane -15

Physical Fabric Establish

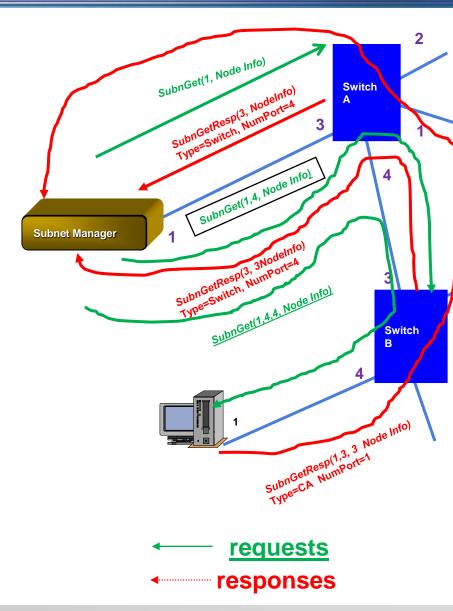
Subnet Discovery

Information Gathering

Lid Assignment

Path Establishment

Port Configuration

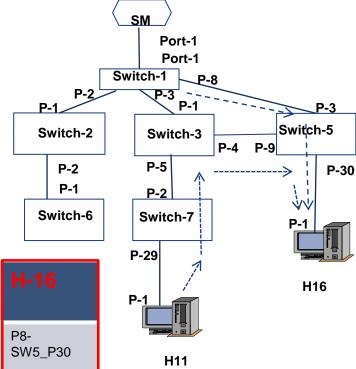

Switch Configuration

Subnet Activation

Subnet Discovery managed by the SM

- SM requests like devices responses will include :
 - Node Info
 - Ports info
- 1. SM I am requesting info via port number 1
- 2. Switch A I am responding via port number 3, I have an Active port Number 4
- 3. SM I am requesting info via:
 - my port 1- next switch (A) port 4
- SWITCH B I am a switch responding via my port 3 via next switch (A) port 3
 - I have a live port port 4
- 5. SM I am requesting info via:
 - my port 1- next switch (A) port 4 ,next switch (B) port 4
- 6. Host I am a CA, responding via my port 1, next switch (B) port 3, next switch (A) port 3

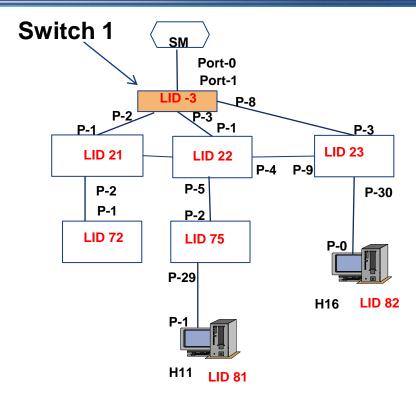
Fabric Information Gathering During Discovery


- What information components are included under PORT INFO and Node INFO:
 - 1. Group Parameters
 - Type
 - NumPorts
 - GUID
 - Partition table size
 - 2. Group Parameters
 - Forwarding Database size
 - MTU
 - Width
 - VLs
 - 3. Group Parameters
 - IsSM,
 - IsM_KeyinNVRAM, ...

Fabric Direct route Information Gathering

- Building the direct routing table from & to each one of the fabric elements
- Each segment in a path, is identified by its PORT NUMBER
 &GUID
- The table content is saved in the SM LMX table

	SW-2	SW-	SW-3	SW-7	SW-5	H-11	H-16
SW-1	P2	P2- SW2- P2	P3	P3- SW3-P5	P8	P3- SW3_P5- SW7_P29	P8- SW5_P30
SW-1						P8- SW5_P9- SW3_P5	
H11	P1- SW7_P2- SW3_P4- SW5_P30	P1- SW7_P 2- SW3_P 1- SW1_P 2-SW2- P2	P1- SW7_P2-	P1-	P1- SW7_P2 - SW3_P4 -		P1- SW7_P2- SW3_P4- SW5_P30


LID Assignment

- After the SM finished gathering all Fabric information, including direct route tables, it assigns a LID to each one of the NODES
- The LID is used as the Main identifier source& destination address for Infiniband packet switching
- The LID is assigned to a Device level Rather than a port Level
- Each port than will be identified by the combination of LID + Port Number

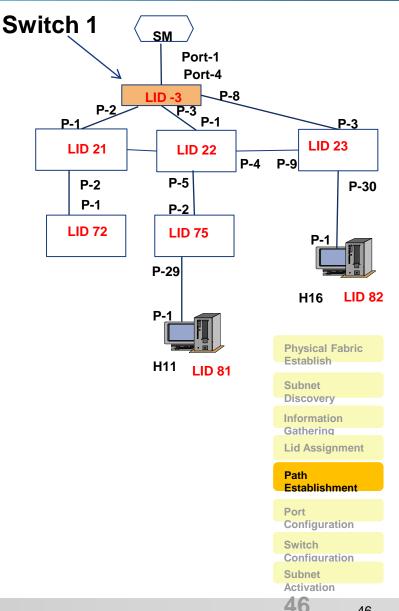
Physical Fabric
Establish
Subnet Discovery
Information Gathering
Lid Assignment
Path Establishment
Port Configuration
Switch Configuration

Subnet Activation

Subnet Administrator (SA)

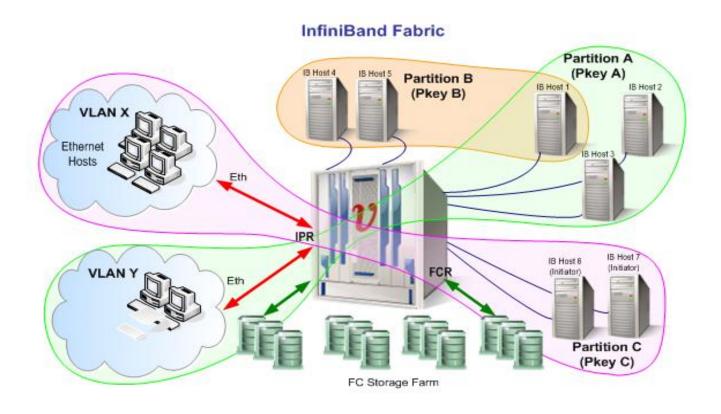
- The SA is typically an extension of the SM
- A passive entity that provides a database of :
 - Subnet topology
 - Device types
 - Device characteristics
- Responds to queries
 - Paths between HCAs
 - Event notification
 - Persistent information
 - Switch forwarding tables
- Used to keep multiple SMs in sync

Subnet Administrator (SA)

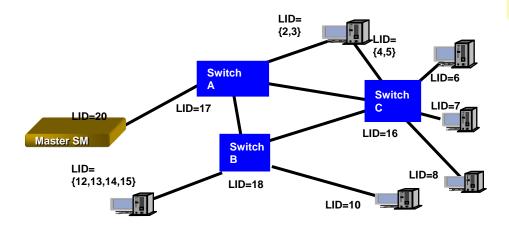

- The SA is typically an extension of the SM
- A passive entity that provides a database of :
 - Subnet topology
 - Device types
 - Device characteristics
- Responds to queries
 - Paths between HCAs
 - Event notification
 - Persistent information
 - Switch forwarding tables
- Used to keep multiple SMs in sync

Linear Forwarding Table Establishment (Path Establishment)

- After the SM finished gathering all Fabric information, including direct route tables, it assigns a LID to each one of the NODES
- At this stage the LMX table will be populated with the relevant routes option to each one of the nodes
- The output of the LMX will provide the Best Route to Reach a DLID. That Result Will be based on Shortest Path First (SPF)


LIVIX Switch_1					LFT Switch_1		
PORT D-LID	2	3	8	Min Hop s		The Dest. LID	Best Route / exit
21	1	2	3	1			port
22	2	1	2	1		21	2
23	3	2	1	1		22	3
75	3	2	3	2		23	8
81	4	3	4	3		75	3
82	4	3	2	2		81	3
						82	8

Partitioning - Pkey to VLAN mapping


- Define up to 64 partitions in a single 10G/4036E
- Partition by mapping port and Ethernet VLAN to InfiniBand PKEY

Port Configuration

- Using (partially) direct routed SubnSet(PortInfo), the Subnet Master sets:
 - LID/LMC
 - MasterSM-LID and MasterSM-SL
 - P_Keys
 - VLs
 - MTU
 - Rate
 - SLtoVL
 - VL arbitration

Physical Fabric Establish

Subnet Discovery

Information Gathering

Lid Assignment

Path Establishment

Port Configuration

Switch Configuration

Subnet Activation

Switch Configuration

- Using the topology info, the Master "programs" the paths through the subnet by configuring the switches with
 - Unicast Forwarding Table: DLID → output-port
 - Multicast Forwarding Table: DLID → port-mask
 - SLtoVLMap: {SL, in-port, out-port} → VL
 - VL Arbitration tables
 - Optional P_Key tables for P_Key enforcement by switches

Physical Fabric Establish

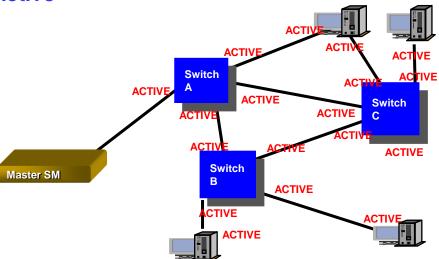
Subnet Discovery

Information Gathering

Lid Assignment

Path Establishment

Port Configuration


Switch Configuration

Subnet Activation

Subnet Activation

- The Master sends to ALL ports SubnSet(PortInfo): PortState = Armed (were INITIALIZE)
- All the ports change to Active state by:
 - The Master sending SubnSet(PortInfo):PortState= Active
 - Any data packet sent to an Armed port causes the port state to change to Active
 - Data packets cause all the ports on a switch to change to Active
- When SM has sent Active to all ports, the subnet is operational.
- SA must be operational as soon as First port→Active

Physical Fabric Establish

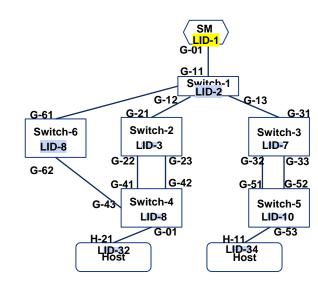
Subnet Discovery

Information Gathering

Lid Assignment

Path Establishment

Port Configuration


Switch Configuration

Subnet Activation

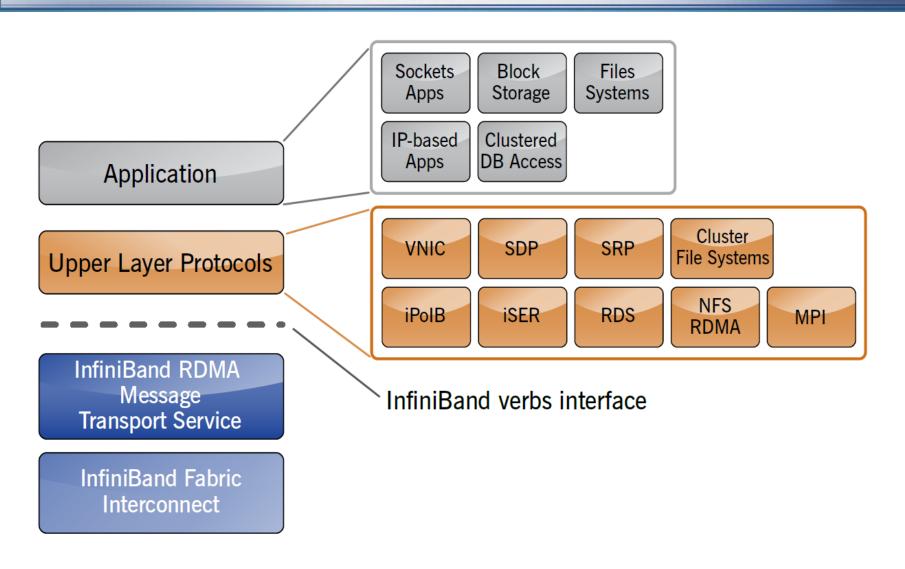
What happens in the Fabric in case of Topology change

- Fabric Topology change may be caused by :
 - Switches added or removed
 - Links added , removed , fall , Recover
 - Operation administration or Maintenance activity
- A topology change will trigger SM SWEEP :
 - Every status change of a Port/Link will cause a Trap that is sent By the switch to the SM over VL-15
 - A change in the Topology triggers the SM to start a process in which Every node in the Fabric will have to report its node and ports status
 - The LMX will rebuilt although in many cases most of its data including direct routes will remain the same
 - If there is no need LID of the Nodes will not be changed
 - Traffic packets that are not physically impacted by link or a switch failure will not be affected
- In order to avoid frequent un necessary change of tables routing and updated flooding of the FLTs, modification occurs only following a status change.

Subnet Manager Failover / Handover

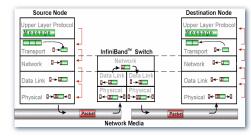
- Subnet Manager Failover & Handover
 - Scope: an InfiniBand subnet
 - SM implements the standard "SMInfo" protocol
 - The "SMInfo" protocol defines failover and handover between subnet managers in a given IB subnet
 - ActCount Increments each time a SM performs a SMP or other mgt activities. Used as a heartbeat indicator for standby SM's.
 - The SM with the higher priority / lower GUID is elected as master All other SM's are standby polling the master activity

OpenSM - Features

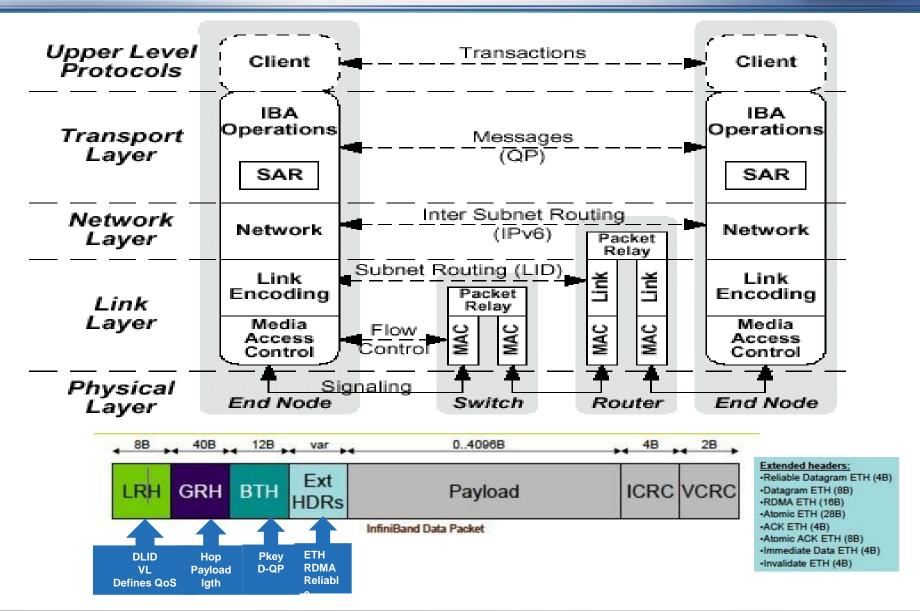

- OpenSM (osm) is an Infiniband compliant subnet manger.
- Included in Linux Open Fabrics Enterprise Distribution.
- Ability to run several instance of osm on the cluster in a Master/Slave(s) configuration for redundancy.
- Partitions (p-key) support
- QoS support
- Enhanced routing algorithms:
 - Min-hop
 - Up-down
 - Fat-tree
 - LASH
 - DOR

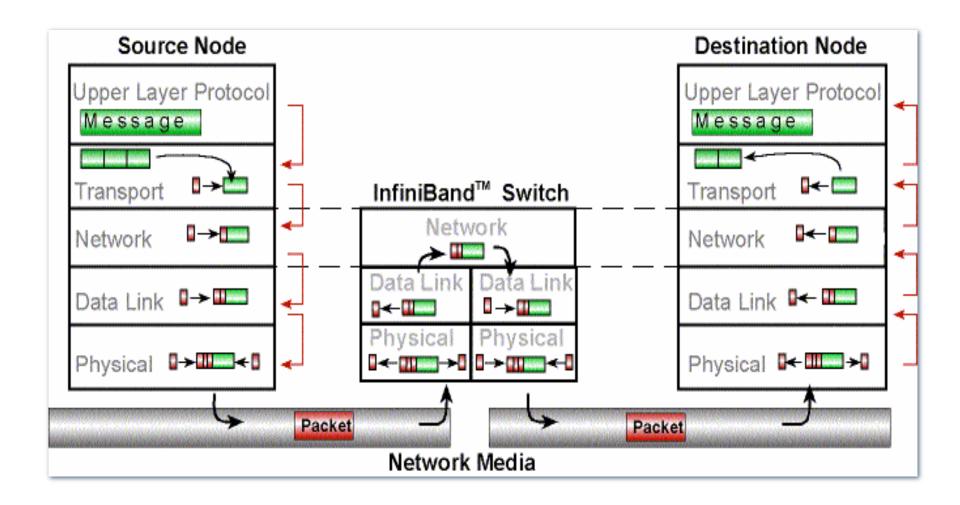
IB Fabric Protocol Layers

Infiniband Protocol Layers



IB Architecture Layers


- Software Transport Verbs and Upper Layer Protocols:
 - Interface between application programs and hardware.
 - Allows support of legacy protocols such as TCP/IP
 - Defines methodology for management functions


- > Transport:
- Delivers packets to the appropriate Queue Pair; Message Assembly/Deassembly, access rights, etc.
- > Network:
 - How packets are routed between Different Partitions /subnets
- Data Link (Symbols and framing):
 - Flow control (credit-based); How packets are routed, from Source to Destination on the same Partition Subnet
- > Physical:
 - Signal levels and Frequency; Media; Connectors

Distributed Computing using IB

Physical Layer - Responsibilities

- InfiniBand is a lossless fabric.
- Maximum Bit Error Rate (BER) allowed by the IB spec is 10e-12.
- The physical layer should guaranty affective signaling to meet this BER requirement

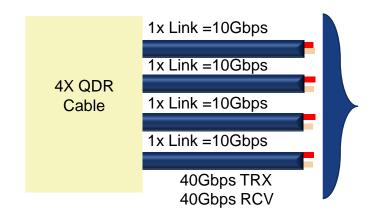
- The physical layer specifies how :
 - Bits iare placed on the wire to form symbols
 - Defines the symbols used for framing (i.e., start of packet & end of packet), data symbols,
 - Fill between packets (Idles).
 - Specifies the signaling protocol as to what constitutes a validly formed packet

72

Physical Layer – Link Rate

InfiniBand uses serial stream of bits for data transfer

Link Speed


- Single Data Rate (SDR) 2.5Gb/s per lane (10Gb/s for 4x)
- Double Data Rate (DDR) 5Gb/s per lane (20Gb/s for 4x)
- Quad Data Rate (QDR) 10Gb/s per lane (40Gb/s for 4x)
- Fourteen Data Rate (FDR) 14Gb/s per lane (56Gb/s for 4x)
- Enhanced Data rate (EDR) 25Gb/s per lane (100Gb/s for 4x)

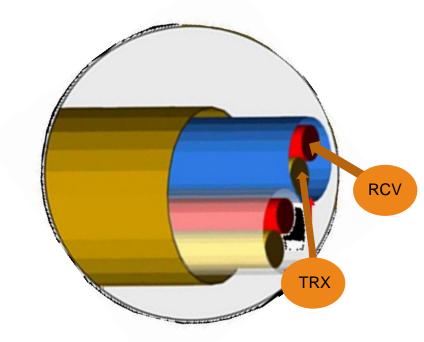
Link width

- 1x One differential pair per Tx/Rx
- 4x Four differential pairs per Tx/Rx
- 12x Twelve differential pairs per Tx and per Rx

Link rate

- Multiplication of the link width and link speed
- Most common shipping today is 4x ports




InfiniBand Electrical Interface

(Physical Layer Link Rate)

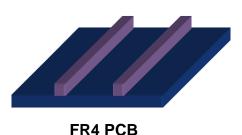
- 1X Link is the basic building block
 - Differential pair of conductors for RX
 - Differential pair of conductors for TX
 - Link Rate per type
 - Timed at 2.5 GHz with SDR
 - Doubled to 5GHz with DDR
 - Quad to 10GHz with QDR

Physical Layer Cont'

Media types

- Printed Circuit Board: several inches
- Copper: 20m SDR, 10m DDR, 7m QDR
- Fiber: 300m SDR, 150m DDR, 100/300m QDR

64/66 encoding on FDR links


- Encoding makes it possible to send digital High Speed signals to a Longer Distance
- x actual data bits are sent on the line by y bits
- 64/66 * 56 = 54.6Gbps

8/10 bit encoding (SDR, DDR, and QDR)

x/y Line efficiency (example 80% * 40 = 32Gbps)

• Industry standard components

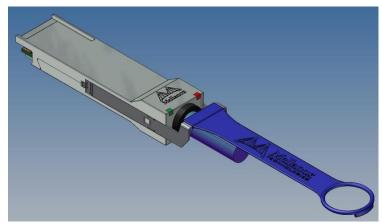
- Copper cables / Connectors
- Optical cables
- Backplane connectors

4X CX4

4x CX4 Fiber

4X QSFP Copper

Mellanox Cable Development

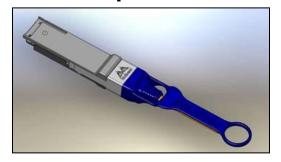


- Connector Mellanox PCB design
 - Leverage board design and H/S expertise
- Improved connector and housing
 - Servers cage compliancy
 - Additional functionality
 - Built-in LEDs

- Active Copper Cables
 - QDR, 40GigE, FDR10
 - Lower power
- Cable optimization for length, performance and cost

Mellanox Cables – Perceptions Vs. Facts

- Mellanox cables are rebranded from a cable vendor
 - Mellanox cables are manufactured by Mellanox


Passive Copper Cables

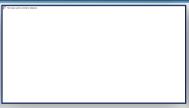
Active Copper Cables

Active Optical Cables

- Our vendor can sell the same cables
 - No other vendor is allowed to sell Mellanox cables
- Mellanox cables use a different assembly procedure
- Mellanox cables are tested with unique test suite
- Vendors' "Finished Goods" fail Mellanox dedicated testing

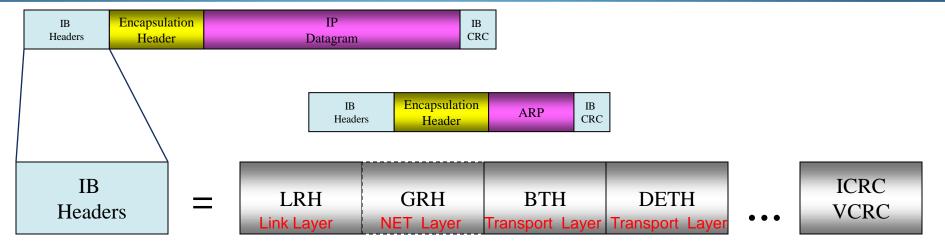
Cable Portfolio

				CAL- TR. INVOID
	QSFP-QSFP	SFP+ - SFP+	CX4 – CX4	CXP - CXP
Applications / Date Rates	DDR/QDR, 40GE and 10GE	10GE	DDR, 10GE	DDR/QDR
Passive Copper	Up to 8m	Up to 7m	Up to 8m	Up to 7m
Active Copper	Up to 12m	N/A	Up to 15m	N/A
Active Optical (fiber)	Regular SKUs up to 300m. Options available up to 4Km.	Use 10GBASE- xR Optical Modules	Up to 100m	Up to 50m
Optical Modules	SR4 based, MTP/MPO connector	10GBase-SR 10GBase-LR	N/A	N/A


Notes:

- CX4 connectors also known as MicroGiGaCN
- QSFP and QSFP+ are used here synonymously, all cables adhere to QSFP+ spec, SFF-8436.

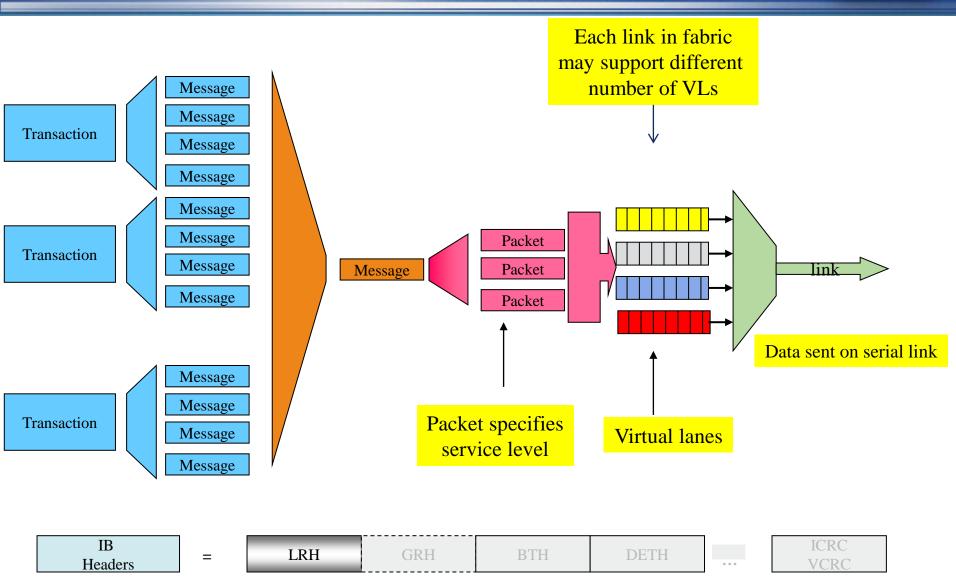
Cable Portfolio – Hybrid Cables


	QSFP-CX4	QSFP+ - SFP+	QSA	Tri -QSFP - CXP
Applications / Date Rates	DDR, 10GE	10GE	10GE	DDR/QDR
Passive Copper	Up to 5m	Up to 7m	Use SFP+ DA cable	Up to 6m
Active Optical (fiber)	Up to 100m	Use QSA and SFP+ Optical Module	Use SFP+ Optical Module	Up to 50m

Notes:

- CX4 connectors also known as MicroGiGaCN
- QSFP and QSFP+ are used here synonymously, all cables adhere to QSFP+ spec, SFF-8436.

IB Headers


LRH: Local Routing Header – Includes LIDs, SL, etc

<u>BTH</u>: Base Transport Header – includes opcode, destination QP, partition, etc.

All Layers

Link Layer Priority Implementation SL to VL Mapping

LRH: Local Routing Header – Includes LIDs, SL, etc

26

Link Layer: Payload Size

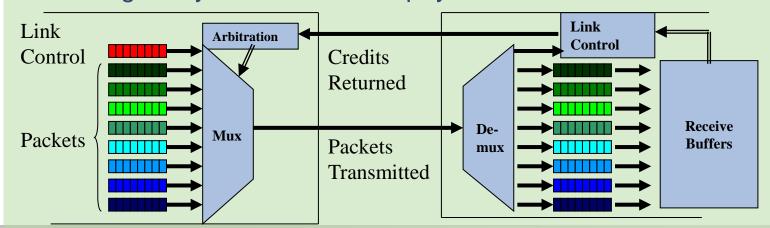
Maximum Transfer Unit (MTU)

- MTU allowed from 256 Bytes to 4K Bytes (Message sizes much larger).
- Only packets smaller than or equal to the MTU are transmitted
- Large MTU is more efficient (less overhead)
- Small MTU gives less jitter
- Small MTU preferable since segmentation/reassembly performed by hardware in the HCA.
- Routing between end nodes utilizes the smallest MTU of any link in the path (Path MTU)

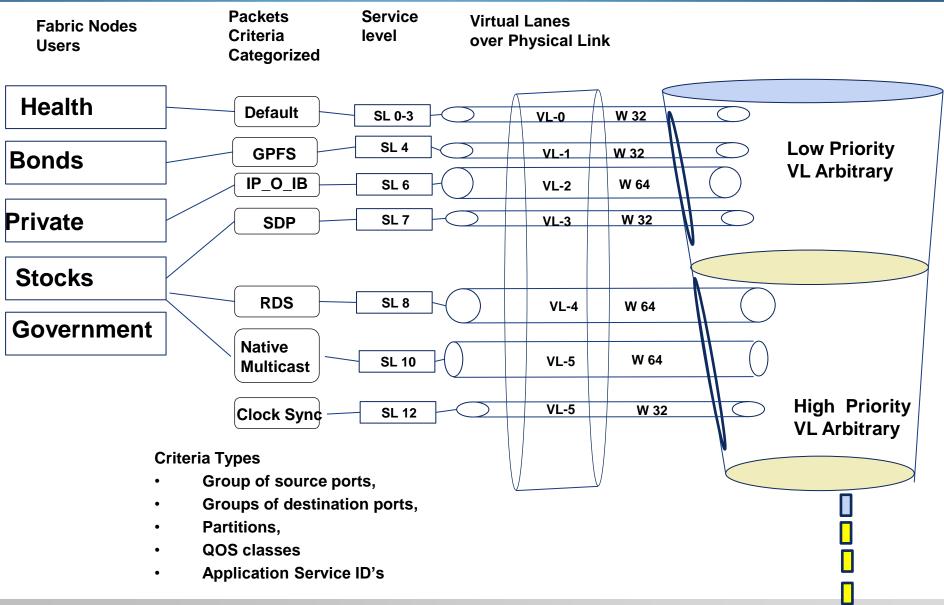
87

Link Layer: Virtual Lanes (Quality of Service)

- 16 Service Levels (SLs)
 - A field in the Local Routing Header (LRH) of an InfiniBand packet
 - Defines the requested QoS
- Virtual Lanes (VLs)
 - A mechanism for creating multiple channels within a single physical link.
 - Each VL:
 - Is associated with a set of Tx/Rx buffers in a port
 - Has separate flow-control
 - A configurable Arbiter control the Tx priority of each VL
 - Each SL is mapped to a VL
 - IB Spec allows a total of 16 VLs (15 for Data & 1 for Management)
 - Minimum of 1 Data and 1 Management required on all links
 - Switch ports and HCAs may each support a different number of VLs
 - VL 15 is a management VL and is not a subject for flow control

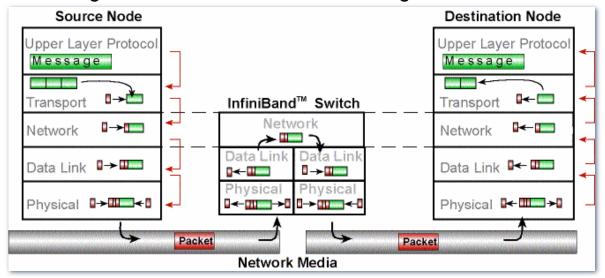

 \mathbf{Q}

Link Layer – Flow Control

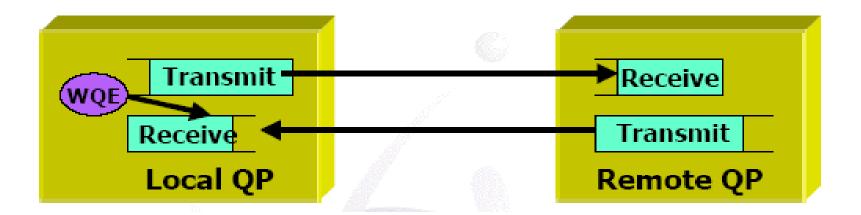

- Credit-based link-level flow control
 - Link Flow control, assures NO packet loss within fabric even in the presence of congestion
 - Link Receivers grant packet receive buffer space credits per Virtual Lane
 - Flow control credits are issued in 64 byte units
- Separate flow control per Virtual Lanes provides:
 - Alleviation of head-of-line blocking
- Virtual Fabrics –

Congestion and latency on one VL, does not impact traffic with guaranteed QOS on another VL, even though they share the same physical link

Mellanox Switches Packet Flow QOS Management



Transport Layer – Responsibilities



- The network and link protocols deliver a packet to the desired destination.
- The transport Layer
 - Segmenting Messages data payload coming from the Upper Layer, into multiple packets that will suit Valid MTU size
 - Delivers the packet to the proper Queue Pair (assigned to a specific session)
 - Instructs the QP how to process the packet's data.
 (Work Request Eelement)
 - Reassembles the Packets arriving from the Other side into Messages

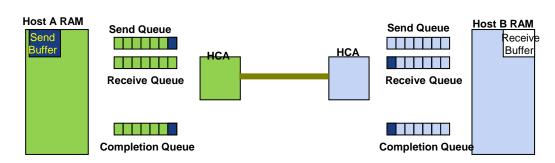
Transport Layer: Queue Pairs

- QPs are in pairs (Send/Receive)
- Every active connection / Session will be assigned with Individual Working Que Pair
- •Work Queue is the consumer/producer interface to the fabric
 - The Consumer/producer initiates a Work Queue Element (WQE)
 - The Channel Adapter executes the work request
 - •The Channel Adapter notifies on completion or errors by writing a Completion Queue Element (CQE) to a Completion Queue (CQ)

93

Transport Layer: Work Request (work Que Pair)

Data transfer


- Send work request
 - Local gather remote write
 - Remote memory read
 - Atomic remote operation
- Receive work request
 - Scatter received data to local buffer(s)

Memory management operations

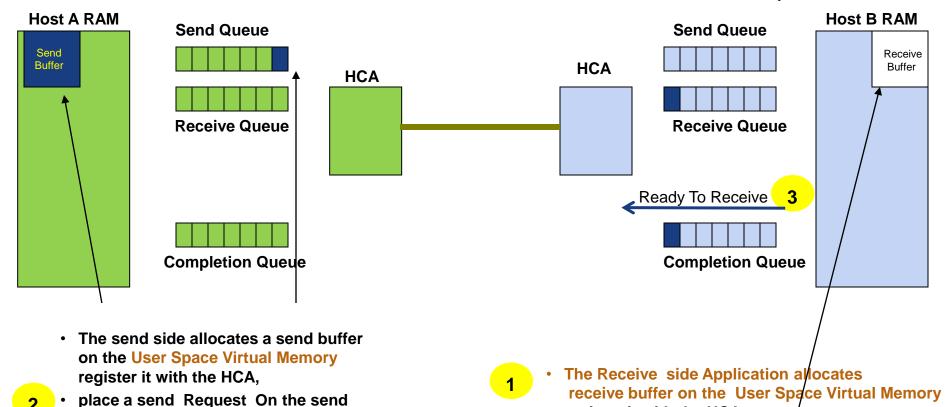
- Bind memory window
 - Open part of local memory for remote access
- Send & remote invalidate
 - Close remote window after operations' completion

Control operations

- · Memory registration/mapping
- Open/close connection (QP)

Transport Layer – Send operation example

- HCA then Executes the send Request,
- read the buffer of the Host Ram
 - and send to remote side (HCA)


- When the packet arrives to the HCA
- It Executes the receive WQE Commands
- Place the buffer CONTENT in the appropriate location

register it with the HCA,

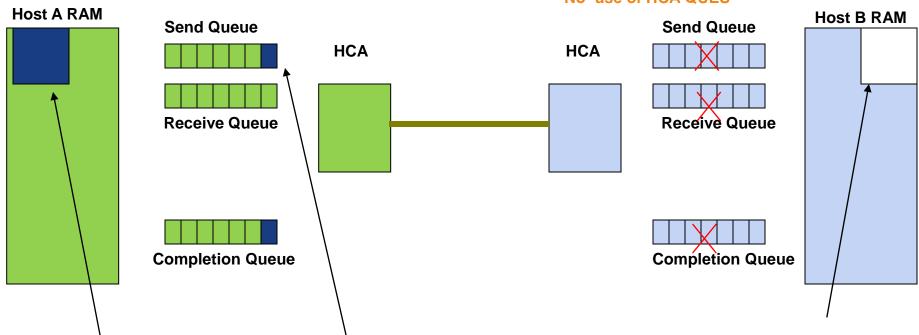
on the Receive QUE

And place a receive Work Request

And Generate a Completion Que

Mellanox Training Center

que


Transport Layer – RDMA Write Example

- HCA then Executes the send Request commands
- · Reads the buffer and send to remote side
- send completion is generated

- When the packet arrives to the HCA
- 4 It checks the address and memory keys
 - And write to Host memory directly
 - No use of HCA QUES

- 2
- The send side allocates a send buffer on the User Space Virtual Memory register it with the HCA,
- place a send Request On the send quewith the remote side's virtual address and the Remote Permission key

- 1
- · Application peforms memory Registration
- And passes address and keys to remote side
- No HCA Receive que is assigned

Management Model

Pure InfiniBand Management

Subnet Manager (SM) Agent

Subnet Manager

Subnet Management Interface

QP0 (virtualized per port)
Always uses VL15
MADs called SMPs – LID or Direct-Routed
No Flow Control

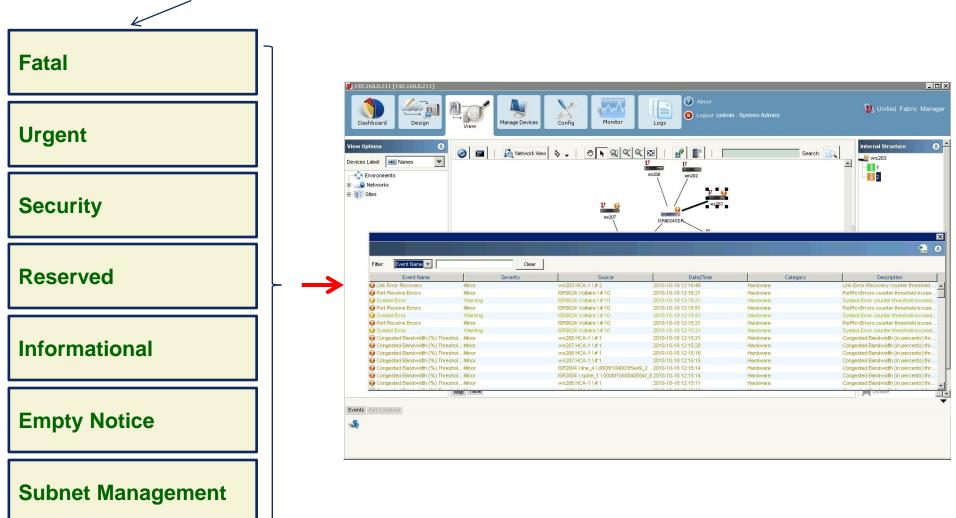
Other Management Features

SNMP Tunneling Agent Application-Specific Agent Vendor-Specific Agent Device Management Agent Performance Management Agent Communication Mgmt (Mgr/Agent) Baseboard Management Agent Subnet Administration (an Agent) General Service Interface

QP1 (virtualized per port)
Uses any VL except 15
MADs called GMPs - LID-Routed
Subject to Flow Control

Other management entities

- Connection Manager (CM)
 - Establishes connection between end-nodes
- Performance Management (PM)
 - Performance Counters
 - Saturating counters
 - Sampling Mechanism
 - Counter works during programmed time period
- Baseboard Management (BSM)
 - Power Management
 - Hot plug in and removal of modules
 - Monitoring of environmental parameters

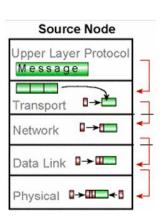

QQ

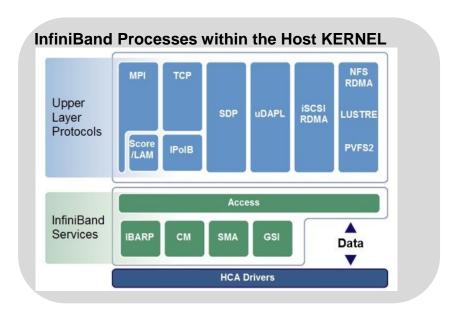
Management Model Packets (VL 15)

There are 7 management packet types

(256 byte per packet)

InfiniBand Upper Layer Protocols




Common InfiniBand Supported Protocols

Communication Protocols & Interfaces

- IPoIB IP over InfiniBand
 - Forwards IP traffic (TCP, UDP and IGMP)
- SDP Sockets Direct Protocol
 - RDMA Off-load Socket Protocol (low CPU utilization)
- UDAPL User level Direct Access Provider Library
 - Enables full kernel by-pass and use of native IB transport
- MPI Message Passing Interface Library interface for distributed/parallel computing

InfiniBand Usage of RDMA Principles

- There are multiple drivers, existing in kernel and user space, involved in a connection.
 See Figure 2a.
- To explain it simply, much of the connection setup work, goes through the kernel driver, as speed is not a critical concern in that area.
- The user space drivers are involved in function calls such as ibv post send and ibv post recv.
- Instead of going through kernel space, they interact directly with the hardware by writing to a segment of mapped memory.
- Avoiding kernel traps is one way to decrease the overall latency of each operation.

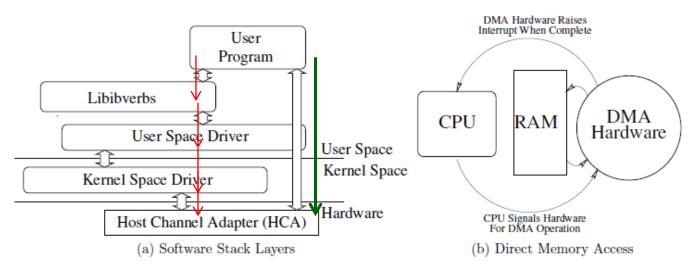


Figure 2: Layers and DMA

RDMA In InfiniBand

- Main key concepts in InfiniBand is Remote Direct Memory Access (RDMA).
- It allows a node to directly access the memory of another node on the subnet, without involving the remote CPU or software layers.
- Remember the key concepts of Direct Memory Access (DMA) as illustrated by Figure 2b.
- In the DMA, the CPU sends a command to the hardware to begin a DMA operation.
- When the operation fininishes, the DMA hardware raises an interrupt with the CPU, signaling completion.

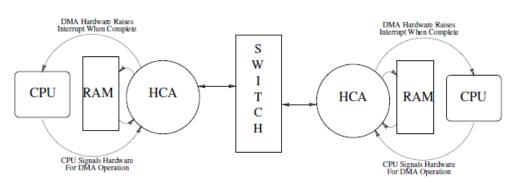
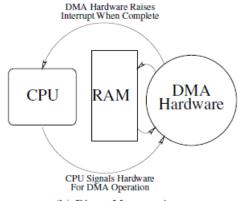



Figure 3: InfiniBand Remote Direct Memory Acess

Remote Direct Memory Access

- The RDMA concept used in InfiniBand is similar to DMA, except with two nodes accessing each other's memory;
- One node is the sender and one is the receiver.
- Figure 2 illustrates an InfiBand connection. In this case the DMA Hardware is the Host
- Channel Adapter (HCA), and the two HCAs are connected, through a switch, to each other.
- The HCA is InfiniBand's version of a network card;
- it is the hardware local to each node that facilitates communications.
- This allows an HCA on one node to use another HCA to perform DMA operations on a remote node.

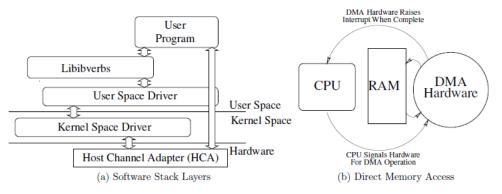


Figure 2: Layers and DMA

Mellanox

Host Channel Adapters (HCA)

This session has partially been discussed before in IB Basics – Filter accordingly

ConnectX-3 InfiniBand Differentiation

- 1µs MPI ping latency
- Up to 56Gb/s InfiniBand or 40 Gigabit Ethernet per port
- PCI Express 3.0 (up to 8GT/s)
- CPU offload of transport operations
- Application offload
- GPU communication acceleration
- Precision Clock Synchronization
- End-to-end QoS and congestion control
- Hardware-based I/O virtualization

- Dynamic power management
- Fibre Channel encapsulation (FCoIB or FCoE)
- Ethernet encapsulation (EoIB)

Virtualization

Cloud Computing

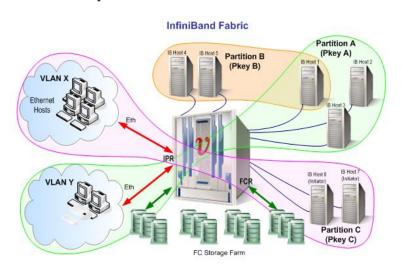
Ethernet & IB Differences

Ethernet VS Infiniband

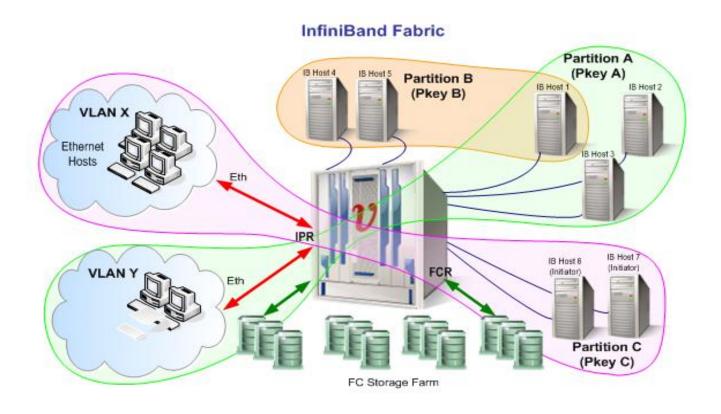
- Infiniband advantage is very low latency
 - IB is fast forward cut through only 2 frames of buffers in the port
- Infiniband advantage Lossless Protocol Fabric
 - Infiniband is a credit based protocol VS pause flow protocol
- Reliability
 - Ethernet has one CRC and IB protocol has CRC on each layer
- Infiniband designed for Scalability with low administration cost
- The Fabric Subnet Manager does it all
 - No need for spanning tree definitions (avoided by the SM algorithm)
 - No need for Link Aggregation Definitions Trunk Groups Port Channels-LAGS
 - No need for routing definitions
 - There is no need for specific Network Packets Tagging
 - PKey will always be tag by default

Ethernet & IB Differences

- Off loading HOST CPU resources Using Remote Direct Memory Access
- Extremely Cheaper cost per-port
 - ~ app 100\$ VS 300\$
- No Forward Data Base Aging
 - LID to Port Mapping (Like mac FDB aging)
 - A route map line is removed from the cache , only if a real change is identified and updated by the SM .
 no flooding , less cpu & memory tasks



IB Partitioning


- Defines up to 64 Networks (partitions)
- Assign Server ports (Port GUID) to one or more networks
- Configure IPR interfaces enabling connectivity between Ethernet VLAN's and IB partitions.
- Provides a level of security with in the fabric. Full or Limited membership.
- Resources can be members of multiple networks.

Partitioning - Pkey to VLAN mapping

- Define up to 64 partitions in a single 10G/4036E
- Partition by mapping port and Ethernet VLAN to InfiniBand PKEY

Thank You www.mellanox.com

