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CUDA GPU

Hundreds of parallel cores

CPU

Several sequential cores

CUDA GPU Accelerates Computing
Choose the Right Processor for the Right Job
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GPUs Accelerate Oak Ridge’s Titan

World’s top open science lab 
embraces GPUs to develop 
world’s leading supercomputer

Cray XK6 machine will use up to 18,000 
NVIDIA Tesla GPUs

Could exceed 20 petaflops, 
over 2x as fast and 3x as energy-
efficient as “K”, last year’s leader 

Paving the way to exascale



5

0

1

2

3

4

5

6

7

8

0

500

1000

1500

2000

2500

Tianhe-1A Jaguar Nebulae Tsubame LBNL

M
e

g
a

w
a

tt
s

Te
ra

fl
o

p
s

GPU Supercomputers: More Power Efficient

GPU+CPU CPU only

Performance Power

Power



6

World’s Fastest Molecular Dynamics Simulation

Sustained Performance of 1.87 Petaflops/s
Institute of Process Engineering (IPE)

Chinese Academy of Sciences (CAS)

Simulation for Crystalline Silicon

Used for Photovoltaic cells & 

Semiconductors

Used all 7168 Tesla GPUs on 

Tianhe-1A GPU Supercomputer
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Fermi 

Lab

CSIRO

256 GPUs

NCSA

384 GPUs
Chinese Academy 

of Sciences

2000+ GPUs

Daresbury Lab
PNNL

256 GPUs

National 

Taiwan Univ

Max Planck 

Institute

Argonne

Lab

Harvard 

Oxford

Jefferson Labs
Georgia Tech

TACC

Delaware

OSC Maryland

Johns Hopkins

WestGrid

Stanford

UNC

NERSC

Prospective Deployment

Existing Deployment

IIT Delhi

CEA

Tokyo Tech

680 GPUs

Peking

University

Univ of 

Science & Tech

Tsinghua

University

NCHC

Curtin

University

Swinburne

University

Riken

220 GPUs

Osaka

Nagasaki

KISTI

Anna 

Univ

IIT 

Madras

Indian Institute 

of Science

NIT Calicut

Dept of 

Space

LRDE

Indian Inst 

of Tropical 

Meteorology

Nizhegorodsky

University

Kazan Univ

St. Petersburg 

University

Institute of

Physics

Aarhus 

Norwegian 

Univ of S & T

Braunschweig

Copenhagen

Oak Ridge

WisconsinVaTec

h Cambridge

Groningen

SNU

Yonsei

Utah

Berkeley



Exaflop Expectations

Not constant size, 
cost or power

CM5
~200 KW

K Computer

~10 MW

First Exaflop
Computer



More Powerful Computing Enables
Transformational Science Results

From Individual Scientists/Engineers to World Class Teams

Comprehensive Earth 

System Model at 1KM 

scale, enabling 

modeling of cloud 

convection and ocean 

eddies.

Coupled simulation of 

entire cells at 

molecular, genetic, 

chemical and 

biological levels.

First-principles 

simulation of 

combustion for new 

high-efficiency, low-

emision engines.

Predictive calculations 

for thermonuclear and 

core-collapse 

supernovae, allowing 

confirmation of 

theoretical models.

(Exascale science challenges) 



Power: This Time It’s Different

In the Good Old Days
Leakage was not important, and 
voltage scaled with feature size

L’ = L/2
V’ = V/2
E’ = CV2 = E/8
f’ = 2f
D’ = 1/L2 = 4D
P’ = P

Halve L and get 4x the 

transistors and 8x the 

capability for the same power!

MF to GF to TF and almost to PF

Technology was giving us 68% per year in perf/W!

The New Reality
Leakage has limited threshold voltage, 

largely ending voltage scaling

Halve L and get 2x the capability for 

the same power.

Processors realized ~50% per year in perf/W…

At constant voltage, technology gives us 

only 19% per year in perf/W

(spent it on single thread performance)



The High Cost of Data Movement
Fetching operands costs more than computing on them

20mm

64-bit DP

1 nJ

28nm IC

256-bit access
8 kB SRAM 50 pJ

16 nJ DRAM Rd/Wr

500 pJ Efficient off-chip link

20 pJ 26 pJ 256 pJ

256

bits

• Relative cost grows 

with each generation

• Wire delay (ps/mm) 

not improving



So, What To Do?

1)  Stop making it worse...

Multicore CPUs

2)  Unwind all that complexity we threw at single thread performance

But still only about 2% of CPU power spent on flops



HPC Going Hybrid

Do most work by cores optimized 

for extreme energy efficiency

Still need a few cores optimized 

for fast serial work

PCIe

x86 CPU
Fast single threads 

(serial work) GPU
Extreme power-efficiency 

(throughput work)

Westmere

32nm

1.7 nJ/flop

Fermi

40nm

225 pJ/flop

And memory hierarchies are 

getting deeper…



Major Software Implications

Computers are not getting faster…   just wider

⇒ Need to cast all HPC apps as throughput problems,

and expose massive parallelism

Locality across nodes is not the problem

… vertical locality is

⇒ Need to expose locality & explicitly manage memory hierarchy

(programming model) (compiler, runtime, auto-tuner)



Science per Watt

=

Performance per Watt

+

Programmability
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Long Term Goals for Tesla

Ease of
Programming
And Portability

Application
Space

Coverage

Power
Efficiency
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KEPLER

SMX

Hyper-Q

Dynamic Parallelism

(programmability and 

application coverage)

(power efficiency)
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Dual GK104 GPUs

3x Single Precision

Video, Signal, Life Sciences, Seismic

GK110 GPU

3x Double Precision

CFD, FEA, Finance, Physics, etc.

Tesla K10 Tesla K20

Available Q4 2012Available Now
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Hyper-Q 

FERMI
1 Work Queue

KEPLER
32 Concurrent Work Queues
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CPU Fermi GPU CPU Kepler GPU

Dynamic Parallelism
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Kepler GK110 SMX vs Fermi SM

Ground up redesign for perf/W

6x the SP FP units

4x the DP FP units

Significantly slower FU clocks

3x sustained perf/W
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Programming GPUs
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CUDA: Easy to Use Parallel Programming Model

C Fortran
Java

Python
Wrappers

Direct 
Compute

OpenCLtm

OpenCL is trademark of Apple Inc. used under license to the Khronos Group Inc. 

C++

Libraries and Middleware

cuFFT
cuBLAS
cuRAND

cuSPARSE

LAPACK
CULA

MAGMA

NPP
cuDPP
Thrust

VSIPL
SVM

OpenCurrent

PhysX
Video

OptiX Ray 
tracing

iray
Rendering

RealityServer

MATLAB
Mathematica

NVIDIA GPU

CUDA Parallel Computing Architecture

GPU Computing Applications
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3 Ways to Accelerate Your Apps

Libraries
Directives

(OpenACC)

Programming 

Languages

Applications

Easiest Approach for 2x to 10x Acceleration Maximum Performance
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GPU Libraries: Simply Use and Accelerate

Parallel Algorithms QUDA
Lattice QCD

Dense Linear Algebra

cuBLAS
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Directives: Add One Line of Code

main() {

double pi = 0.0; long i;

#pragma omp parallel for reduction(+:pi)
for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

printf(“pi = %f\n”, pi/N);

}

CPU

OpenMP

main() {

double pi = 0.0; long i;

#pragma omp acc_region_loop

#pragma omp parallel for reduction(+:pi)
for (i=0; i<N; i++)

{

double t = (double)((i+0.05)/N);

pi += 4.0/(1.0+t*t);

}

#pragma omp end acc_region_loop
printf(“pi = %f\n”, pi/N);

}

CPU GPU

GPU Directives*

*Directives from Cray
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C for CUDA :  C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)void saxpy_serial(int n, float a, float *x, float *y)void saxpy_serial(int n, float a, float *x, float *y)void saxpy_serial(int n, float a, float *x, float *y)

{{{{

forforforfor (int i = 0; i(int i = 0; i(int i = 0; i(int i = 0; i <<<< n; ++i)n; ++i)n; ++i)n; ++i)

y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];

}}}}

// Invoke serialserialserialserial SAXPY kernel

saxpy_serial(n, 2.0, x, y);saxpy_serial(n, 2.0, x, y);saxpy_serial(n, 2.0, x, y);saxpy_serial(n, 2.0, x, y);

__global__ __global__ __global__ __global__ void saxpy_parallel(int n, float a, float *x, float *y)void saxpy_parallel(int n, float a, float *x, float *y)void saxpy_parallel(int n, float a, float *x, float *y)void saxpy_parallel(int n, float a, float *x, float *y)

{{{{

int i = int i = int i = int i = blockIdxblockIdxblockIdxblockIdx.x*.x*.x*.x*blockDimblockDimblockDimblockDim.x + .x + .x + .x + threadIdxthreadIdxthreadIdxthreadIdx.x;.x;.x;.x;

ifififif (i(i(i(i <<<< n)  n)  n)  n)  y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];y[i] = a*x[i] + y[i];

}}}}

// Invoke parallelparallelparallelparallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;int nblocks = (n + 255) / 256;int nblocks = (n + 255) / 256;int nblocks = (n + 255) / 256;

saxpy_parallelsaxpy_parallelsaxpy_parallelsaxpy_parallel<<<nblocks, 256>>><<<nblocks, 256>>><<<nblocks, 256>>><<<nblocks, 256>>>(n, 2.0, x, y);(n, 2.0, x, y);(n, 2.0, x, y);(n, 2.0, x, y);

Standard C Code

Parallel C Code
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Minimum Change, Big Speed-up

Application Code

+

GPU CPUUse CUDA to 
Parallelize

Compute-Intensive Functions
Rest of Sequential

CPU Code
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CUDA By the Numbers:

CUDA Capable GPUs300,000,000

CUDA Toolkit Downloads1,000,000

Active CUDA Developers100,000

Universities Teaching CUDA460

% OEMs offer CUDA GPU PCs100

0

1000

2000

3000

NVIDIA GPGPU:
Papers and 

Articles
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Getting Started with GPUs

TRY

Try CUDA 4.0 on your Notebook or 

Desktop with CUDA Enabled GPU

DEVELOP

Optimize HPC Apps on Compute 

Workstation with Tesla GPUs

DEPLOY

Run apps in production with GPU 

Compute Cluster
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Making Science Better, not just Faster
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An Exciting Revolution - Sodium Map of the Brain

Images of sodium in the brain
Sodium is one of the most regulated substance in human tissues

Any significant shift in sodium concentration signals cell death

Much less abundant than water in human tissues, about 1/2000

Very large number of samples are needed for good SNR

Requires high-quality reconstruction, currently considered impractical

Thanks: Wen-mei Hwu

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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An Exciting Revolution - Sodium Map of the Brain

Enables study of brain-cell viability before anatomic changes 
occur in stroke and cancer treatment.

Drastic improvement of timeliness of treatment decision 

Minutes for stroke and days for oncology.

Courtesy of Keith Thulborn and Ian Atkinson, Center for MR Research, University of Illinois at Chicago
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Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding1

FFT LS

Spiral scan data + Gridding + FFT: 

Fast scan, fast reconstruction, good images

Can become realtime with about 10X speedup.
1 Based on Fig 1 of Lustig et al, Fast Spiral Fourier Transform for Iterative MR Image Reconstruction, IEEE Int’l Symp. on Biomedical Imaging, 2004
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Spiral scan data + LS

Superior images at expense of significantly more computation; several hundred 

times slower than gridding.

Traditionally considered impractical!

Reconstructing MR Images

Cartesian Scan Data Spiral Scan Data

Gridding

FFT Least-Squares (LS)
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Conclusion: Three Options for CUDA Adoption

“Accelerate” Legacy Codes

Call CUBLAS/CUFFT/thrust/matlab/PGI pragmas/etc. 

=> good work for domain scientists (minimal CS required)

Rewrite / Create new codes

Opportunity for clever algorithmic thinking

=> good work for computer scientists (minimal domain knowledge 
required)

Rethink Numerical Methods & Algorithms

Potential for biggest performance advantage

=> Interdisciplinary: requires CS and domain insight

=> Exciting time to be a computational scientist
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The Future
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Project Denver
NVIDIA-Designed 

High Performance ARM CPU
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GPU
200pJ/Instruction

Optimized for Throughput

Explicit Management
of On-chip Memory

CPU
2nJ/Instruction

Optimized for Latency

Caches
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Echelon
NVIDIA’s Extreme-Scale Computing Project
DARPA UHPC Program
Targeting 2018
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Echelon Compute Node & System

System Interconnect

NoC

C0 C7

SM0 SM255

L
O

C
 0

L
O

C
 7

L20

256KB

L21023

256KB
MC NIC

Processor Chip

DRAM

Stacks

DRAM

DIMMs

NV

RAM

Node 0:  16 TF,  2 TB/s, 512+ GB Node 255

Cabinet 0:  4 PF, 128 TB Cabinet N-1

Echelon System (up to 1 EF)

Key architectural features:

Echelon Compute Node & System

• Malleable memory hierarchy

• Hierarchical register files

• Hierarchical thread scheduling

• Place coherency/consistency

• Temporal SIMT & scalarization

• PGAS memory

• HW accelerated queues

• Active messages

• AMOs everywhere

• Collective engines

• Streamlined LOC/TOC 

interaction
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Academic Program Goals

Engage with external researchers

Learn from emerging research ideas

Guide researchers working on important problems

Ignite disciplines with the power of GPUs and CUDA
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research.nvidia.com

Advancing The Parallel Computing Revolution

The CUDA Parallel Programming Model has been taught in 400+ 
Universities

Support

• CUDA Centers

• Academic Partnerships

• Graduate Fellowships

• Internships & Coops

Resources

• CUDA Courses and Training

• CUDA Zone

• Developer Zone

Discuss

• Research Summit at GTC

• CUDA Forums

• twitter.com/gpucomputing
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NVIDIA
SuperPhones to SuperComputers



Thank You


