ACCELERATION OF IMPLICIT SCHEMES USING REDUCED MODELS AND GRID COMPUTING

Yuri Vassilevski

Institute of Numerical Mathematics Russian Academy of Sciences Moscow, Russia

 ${\rm MSU},\, 5.7.2012$

Yu.Vassilevski (INM RAS)

Acceleration of implicit schemes

MSU, 5.7.2012

1 / 26

Instead of introduction

movie

Yu.Vassilevski (INM RAS)

Acceleration of implicit schemes

MSU, 5.7.2012 2 / 26

• OpenMP computation of droplet

1100 time steps, $h = 8^{-1} - 512^{-1}$, no parallel solvers

# cores	2	4	8
Intel Xeon 2.6 Ghz			
Time, hours	30.50	22.84	18.815

• MPI visualization of flooding

Povray-MPI, resolution 4096×3072 of single frame

# cores	15		60	120
Intel Xeon 2.6 Ghz				
Time, seconds	367	195	107	62

- Parallel computing technology should correspond to algorithm
- I proceed to an algorithm which fits to GRID computing

• OpenMP computation of droplet

1100 time steps, $h = 8^{-1} - 512^{-1}$, no parallel solvers

# cores	2	4	8
Intel Xeon 2.6 Ghz			
Time, hours	30.50	22.84	18.815

• MPI visualization of flooding

Povray-MPI, resolution 4096×3072 of single frame

# cores	15	30	60	120
Intel Xeon 2.6 Ghz				
Time, seconds	367	195	107	62

- Parallel computing technology should correspond to algorithm
- I proceed to an algorithm which fits to GRID computing

• OpenMP computation of droplet

1100 time steps, $h = 8^{-1} - 512^{-1}$, no parallel solvers

# cores	2	4	8
Intel Xeon 2.6 Ghz			
Time, hours	30.50	22.84	18.815

• MPI visualization of flooding

Povray-MPI, resolution 4096×3072 of single frame

# cores	15	30	60	120
Intel Xeon 2.6 Ghz				
Time, seconds	367	195	107	62

• Parallel computing technology should correspond to algorithm

• I proceed to an algorithm which fits to GRID computing

• OpenMP computation of droplet

1100 time steps, $h = 8^{-1} - 512^{-1}$, no parallel solvers

# cores	2	4	8
Intel Xeon 2.6 Ghz			
Time, hours	30.50	22.84	18.815

• MPI visualization of flooding

Povray-MPI, resolution 4096×3072 of single frame

# cores	15	30	60	120
Intel Xeon 2.6 Ghz				
Time, seconds	367	195	107	62

- Parallel computing technology should correspond to algorithm
- I proceed to an algorithm which fits to GRID computing

Acceleration of implicit schemes using reduced models and grid computing

> Joint work with Damien Tromeur-Dervout University of Lyon 1

Acceleration of implicit schemes using reduced models and grid computing

> Joint work with Damien Tromeur-Dervout University of Lyon 1

D.Tromeur-Dervout, Yu.V., Journal of Computational Physics, 219, 2006D.Tromeur-Dervout, Yu.V., Advances in Engineering Software, 38, 2007

Inexact Newton backtracking method for F(u) = 0

S.Eisenstat, H.Walker,'90s

- Newton: $F'(u_k)s_k = -F(u_k), u_{k+1} = u_k + s_k$
- Inexact Newton: $\|F(u_k) + F'(u_k)s_k\| \le \eta_k \|F(u_k)\|$ $\eta_k = \|\|F(u_k)\| - \|F(u_{k-1}) + F'(u_{k-1})s_{k-1}\|\|/\|F(u_{k-1})\|$

• Inexact Newton Backtracking: while $\|F(u_k + s_k)\| > [1 - 10^{-4}(1 - \eta_k)]\|F(u_k)\|$ update $s_k \leftarrow \theta s_k$ and $\eta_k \leftarrow 1 - \theta(1 - \eta_k)$ $u_{k+1} = u_k + s_k$

$$F'(u_k)v = \frac{1}{\delta}[F(u_k + \delta v) - F(u_k)]$$

NITSOL H.Walker,'98

Fully implicit schemes

Backward Euler:
$$\frac{u^i - u^{i-1}}{\Delta t} + A(u^i) = g^i$$
, or
 $F^i(u^i) = 0$

For i = 1, ...:

• set
$$u_0^i = u^{i-1}$$

• solve
$$F^i(u^i) = 0$$
 by INB

Idea: get better u_0^i by POD and Reduced Model

P.Fischer '98, M.Clemens et al.'03 reconstruction from u^{i-m},..., uⁱ⁻¹
M.Rathinam, L.Petzold '03 review of POD and RM
D.Tromeur-Dervout, Yu.V. '05,'06,'07 INB+POD+RM
R.Marcovinovic, J.Jansen '07 POD-RM for linear schemes

Proper orthogonal decomposition

What vector $v \in \mathbb{R}^N$ is the most close to $\{u^i\}_{i=1}^n$:

$$v = \arg \min_{v \in R^N} \sum_{i=1}^n \|u^i - P_v u^i\|^2$$
?

Proper orthogonal decomposition

What vector $\boldsymbol{v} \in \boldsymbol{R}^{N}$ is the most close to $\{\boldsymbol{u}^{i}\}_{i=1}^{n}$:

$$v = \arg \min_{v \in R^N} \sum_{i=1}^n \|u^i - P_v u^i\|^2$$
?

Generate correlation matrix $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathsf{T}}, \ \mathbf{X} = \{\mathbf{u}^{i}\}$

$$Rw_j = \lambda_j w_j, \quad \lambda_1 \ge \cdots \ge \lambda_N \ge 0$$
$$v = w_1 \rightarrow \sum_{i=1}^n \|u^i - P_v u^i\|^2 = \sum_{j=2}^N \lambda_j$$

Proper orthogonal decomposition

What vector $\boldsymbol{v} \in \boldsymbol{R}^{N}$ is the most close to $\{\boldsymbol{u}^{i}\}_{i=1}^{n}$:

$$v = \arg \min_{v \in R^N} \sum_{i=1}^n \|u^i - P_v u^i\|^2$$
?

Generate correlation matrix $\mathbf{R} = \mathbf{X}\mathbf{X}^{\mathsf{T}}, \ \mathbf{X} = \{\mathbf{u}^{i}\}$

$$Rw_j = \lambda_j w_j, \quad \lambda_1 \geq \cdots \geq \lambda_N \geq 0$$

$$v = w_1 \rightarrow \sum_{i=1}^n \|u^i - P_v u^i\|^2 = \sum_{j=2}^N \lambda_j$$

or generate $n \times n$ -matrix $r = X^T X$, $X = \{u^i\}$

$$r\hat{w}_j = \mu_j \hat{w}_j, \quad \mu_1 \geq \cdots \geq \hat{\mu}_n \geq 0$$

$$\lambda_j = \mu_j, \quad w_j = X \hat{w}_j, \quad j = 1, \dots, n$$

Yu.Vassilevski (INM RAS)

What *m*-dimensional subspace *S* is the most close to $\{u^i\}_{i=1}^n$?

$$S = \operatorname{span}\{w_j\}_{j=1}^m \to \sum_{i=1}^n ||u^i - P_S u^i||^2 = \sum_{j=m+1}^N \lambda_j$$

Yu.Vassilevski (INM RAS) Acceleration

MSU, 5.7.2012 9 / 26

- Given $u^1, ..., u^n$ and small integer m
- Form $\boldsymbol{X} = \{\boldsymbol{u}^1,...,\boldsymbol{u}^n\},\,\boldsymbol{R} = \boldsymbol{X}\boldsymbol{X}^T$ (or $\boldsymbol{r} = \boldsymbol{X}^T\boldsymbol{X})$
- Find *m* largest e.-v. of $Rw_j = \lambda_j w_j$, $(w_i, w_j) = \delta_{ij}$
- Form Reduced Model basis $V_m = \{w_1,...,w_m\}$
- Form Reduced Model problem $V_m^T F(V_m \hat{u}) = 0$

- Given $u^1, ..., u^n$ and small integer m
- Form $\boldsymbol{X} = \{\boldsymbol{u}^1,...,\boldsymbol{u}^n\},\,\boldsymbol{R} = \boldsymbol{X}\boldsymbol{X}^T$ (or $\boldsymbol{r} = \boldsymbol{X}^T\boldsymbol{X})$
- Find *m* largest e.-v. of $Rw_j = \lambda_j w_j$, $(w_i, w_j) = \delta_{ij}$
- Form Reduced Model basis $V_m = \{w_1,...,w_m\}$
- Form Reduced Model problem $V_m^T F(V_m \hat{u}) = 0$

problem $V_m^T F(V_m \hat{u}) = 0$ has low dimension!

- Solve Reduced Model problem $\hat{F}(\hat{u}) = V_m^T F(V_m \hat{u}) = 0$ by INB
- Project the solution to R^N : $u_0 = V_m \hat{u}$
- Use u_0 as initial guess for F(u) = 0

- Solve Reduced Model problem $\hat{F}(\hat{u}) = V_m^T F(V_m \hat{u}) = 0$ by INB
- Project the solution to \mathbb{R}^{N} : $u_{0} = V_{m}\hat{u}$
- Use u_0 as initial guess for F(u) = 0

INB for $\hat{F}(\hat{u}) = 0$:

- Evaluation of \hat{F} requires $V_m \cdot, \, F(\cdot), \, V_m^T \cdot$
- No preconditioning (small m)

11 / 26

Fully implicit schemes accelerated by POD and RM

Choose $n, \epsilon > 0$. For i = 1, ...If $i \le n$ solve $F^i(u^i) = 0$ with accuracy ϵ and $u_0^i = u^{i-1}$

Yu.Vassilevski (INM RAS)

Fully implicit schemes accelerated by POD and RM

Choose $n, \epsilon > 0$. For i = 1, ...If i < n solve $F^i(u^i) = 0$ with accuracy ϵ and $u_0^i = u^{i-1}$ Else

• if
$$(mod(i, n) = 1)$$
: form $X = \{u^j\}_{j=i-n}^{i-1}, R = XX^T$,
form RM basis $V_m = \{w_j\}_{j=1}^m$: $\sum_{k=m+1}^N \lambda_k < \epsilon$

2 solve $V_m^T F^i(V_m \hat{u}^i) = 0$ with accuracy $\epsilon/10 \leftarrow \text{Reduced Model}$ \bigcirc set $u_0^i = V_m \hat{u}^i$ \leftarrow Initial Guess (solve $F^i(u^i) = 0$ with accuracy ϵ \leftarrow Original Model

step 1 produces the reduced model basis (seldom)

step 2 solves implicitly the reduced model without preconditioning (m is small) step 3 gives better initial guess for the original problem to be solved at step 4 adaptive choice of m may be replaced by $N\lambda_{m+1} < \epsilon,$ or even fixed m

Example: unsteady lid driven cavity (2d NS)

Streamfunction formulation

$$-\frac{\partial}{\partial t}(\Delta \psi) + \frac{1}{Re}\Delta^2 \psi + (\psi_y(\Delta \psi)_x - \psi_x(\Delta \psi)_y) = 0$$

$$\psi = 0 \text{ on } \partial\Omega, \ \frac{\partial \psi}{\partial n} = \begin{cases} v(t) & \text{if } y = 1\\ 0 & \text{if } 0 \le y < 1 \end{cases}$$

$$\psi|_{t=0} = 0 \quad v(t) = 1 + 0.2 \sin(t/10) \rightarrow \text{quasi-periodic}$$

 $\psi|_{t=0} = 0$ $v(t) = 1 + 0.2 \sin([1 + 0.2 \sin(t/5)]t/10) \rightarrow \text{arrhythmic flow}$

GMRES preconditioned by $\frac{1}{Re}\Delta^2 \rightarrow$ independence of mesh size for $Re = 10^3$

Yu.Vassilevski (INM RAS)

MSU, 5.7.2012

13 / 26

$$\begin{split} h &= 256^{-1} \to 65025 \text{ dof}, \, \|F^i(u_k^i)\| < 10^{-7} \|F^0(0)\| \\ \Delta t &= 5 \to \sim 13 \text{ time steps per period} \end{split}$$

$$\label{eq:n-20} \begin{split} n &= 20 \rightarrow X = \{u^{20k-10} \dots u^{20k+9}\}, \ k = 1,2, \dots \\ \text{dimension of the reduced model } m = 10. \end{split}$$

m = 10 eigenvectors is more than enough: $\lambda_1 = 4.7 \cdot 10^3$, $\lambda_{10} = 5.6 \cdot 10^{-8}$

Arnoldi process with 50 multiplications by matrix $R \rightarrow$

$$\|\mathbf{R}\mathbf{w}_1 - \lambda_1 \mathbf{w}_1\|/\lambda_1 = 5 \cdot 10^{-16}, \|\mathbf{R}\mathbf{w}_{10} - \lambda_{10}\mathbf{w}_{10}\|/\lambda_{10} = 8 \cdot 10^{-7}$$

14 / 26

Effect of POD-RM for quasi-periodic case

Yu.Vassilevski (INM RAS)

MSU, 5.7.2012

i	10	20	30	32	52	72
	$u_0^i = u^{i-1}$					
$\ F(u_{0}^{i})\ $	0.36	0.79	0.09	$22 \cdot 10^{-6}$	10 ⁻⁶	$2.6 \cdot 10^{-6}$
n _{evF}	166	186	189	44 + 55	45 + 11	$44 {+} 19$
n _{precF}	160	180	183	$0{+}51$	0+9	$0{+}16$
ĊPU	13.4	15.3	16.1	$1.2{+}4.2$	$1.1{+}1.1$	$1.1{+}1.2$

average acceleration 5-6 times

Yu.Vassilevski (INM RAS)

MSU, 5.7.2012

i	10	20	30	32	52	72
	u	$u_{0}^{i} = u_{0}^{i-1}$	-1		$u_0^i = V_m \hat{u}^i$	
$\ F(u_{0}^{i})\ $	0.01	2.2	1.3	$5 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$2 \cdot 10^{-4}$
n _{evF}	115	205	227	50 + 98	42 + 80	49 + 77
n _{precF}	110	198	221	0 + 93	$0{+}75$	$0{+}72$
CPU	9.2	16.7	19.5	1.3 + 7.7	$1.0{+}6.4$	$1.1 {+} 5.9$

average acceleration 2 times

Yu.Vassilevski (INM RAS)

GRID application

æ

Two types of remoted computing resources:

Solver \longleftrightarrow **PODgenerator**

Features of GRID architecture and POD acceleration

• Slow communication network with high latency time between clusters of resources

Features of GRID architecture and POD acceleration

- Slow communication network with high latency time between clusters of resources
 - POD acceleration can be used whenever POD data are available

- Slow communication network with high latency time between clusters of resources
 - POD acceleration can be used whenever POD data are available
 - no idling due to asynchronous non blocking communications

 $\textit{POD}(\textit{generator}) \leftrightarrow \textit{Solver}$

• High probability of failure of some part of the computing resources

(if resources are not dedicated to single application and single user)

• High probability of failure of some part of the computing resources

(if resources are not dedicated to single application and single user)

• POD generator can restart the computation on the solver resource

- High probability of failure of some part of the computing resources (if resources are not dedicated to single application and single user)
 - POD generator can restart the computation on the solver resource

It can spawn a new set of MPI processes on Solver resource It can provide last solution recovered from the reduced model (no backup)

Features of GRID architecture and POD acceleration

• POD resource may work with several tasks

- POD resource may work with several tasks
 - Its task is waiting data from Solver and computing POD basis

- POD resource may work with several tasks
 - Its task is waiting data from Solver and computing POD basis
 - Due to asynchronous non blocking communications it can
 - serve other Solvers
 - make post-processing (visualization, a posteriori error estimates)

Example: unsteady driven cavity (2d NS)

A Computer A = SGI Altix350

(2 Ithanium 1.3Ghz/3Mo, 1.3Gb/s network bandwidth)

B Computer B = Linux cluster

(AMD BiAthlon 1600+ MP, 100Mb/s network bandwidth)

N Network = latency 140 μs , maximum bandwidth 71 Mb/s

Example: unsteady driven cavity (2d NS)

A Computer A = SGI Altix350

(2 Ithanium 1.3Ghz/3Mo, 1.3Gb/s network bandwidth)

Computer B = Linux cluster В

(AMD BiAthlon 1600+ MP, 100Mb/s network bandwidth)

N Network = latency 140 μs , maximum bandwidth 71*Mb/s*

Solver resource = Computer A POD resource = Computer B

Effect of POD-RM for quasi-periodic case

Yu.Vassilevski (INM RAS)

MSU, 5.7.2012

25 / 26

- Parallel computing technology should correlate to computational algorithm
- INB-POD-RM can accelerate implicit schemes in sequential and parallel computations
- INB-POD-RM can accelerate implicit schemes in GRID computing

- Parallel computing technology should correlate to computational algorithm
- INB-POD-RM can accelerate implicit schemes in sequential and parallel computations
- INB-POD-RM can accelerate implicit schemes in GRID computing

- Parallel computing technology should correlate to computational algorithm
- INB-POD-RM can accelerate implicit schemes in sequential and parallel computations
- INB-POD-RM can accelerate implicit schemes in GRID computing