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Complexity and parallelization

OpenMP computation of droplet
1100 time steps, h = 8−1 − 512−1, no parallel solvers

# cores 2 4 8
Intel Xeon 2.6 Ghz

Time, hours 30.50 22.84 18.815

MPI visualization of flooding
Povray-MPI, resolution 4096× 3072 of single frame

# cores 15 30 60 120
Intel Xeon 2.6 Ghz

Time, seconds 367 195 107 62

Parallel computing technology should correspond to algorithm

I proceed to an algorithm which fits to GRID computing
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Acceleration of implicit schemes using reduced models
and grid computing

Joint work with

Damien Tromeur-Dervout

University of Lyon 1

D.Tromeur-Dervout, Yu.V., Journal of Computational Physics, 219, 2006
D.Tromeur-Dervout, Yu.V., Advances in Engineering Software, 38, 2007
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Inexact Newton backtracking method for F (u) = 0

S.Eisenstat, H.Walker,’90s

Newton: F ′(uk )sk = −F (uk ), uk+1 = uk + sk

Inexact Newton: ‖F (uk ) + F ′(uk )sk‖ ≤ ηk‖F (uk )‖
ηk = |‖F (uk )‖ − ‖F (uk−1) + F ′(uk−1)sk−1‖|/‖F (uk−1)‖

Inexact Newton Backtracking:
while ‖F (uk + sk )‖ > [1− 10−4(1− ηk )]‖F (uk )‖

update sk ← θsk and ηk ← 1− θ(1− ηk )
uk+1 = uk + sk

F ′(uk )v = 1
δ [F (uk + δv)− F (uk )] NITSOL H.Walker,’98
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Fully implicit schemes

Backward Euler: ui−ui−1

∆t + A(ui) = g i , or

F i(ui) = 0

For i = 1, ... :

set ui
0 = ui−1

solve F i(ui) = 0 by INB

Idea: get better ui
0 by POD and Reduced Model
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Related works

P.Fischer ’98, M.Clemens et al.’03 reconstruction from ui−m, . . . , ui−1

M.Rathinam, L.Petzold ’03 review of POD and RM

D.Tromeur-Dervout, Yu.V. ’05,’06,’07 INB+POD+RM

R.Marcovinovic, J.Jansen ’07 POD-RM for linear schemes

Yu.Vassilevski (INM RAS) Acceleration of implicit schemes MSU, 5.7.2012 7 / 26



Proper orthogonal decomposition

What vector v ∈ RN is the most close to {ui}ni=1:

v = arg min
v∈RN

n∑
i=1

‖ui − Pv ui‖2?

Generate correlation matrix R = XX T , X = {ui}

Rwj = λjwj , λ1 ≥ · · · ≥ λN ≥ 0

v = w1 →
n∑

i=1

‖ui − Pv ui‖2 =
N∑

j=2

λj

or generate n × n-matrix r = X T X , X = {ui}

r ŵj = µjŵj , µ1 ≥ · · · ≥ µ̂n ≥ 0

λj = µj , wj = Xŵj , j = 1, . . . ,n
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Proper orthogonal decomposition

What m-dimensional subspace S is the most close to {ui}ni=1?

S = span{wj}mj=1 →
n∑

i=1

‖ui − PSui‖2 =
N∑

j=m+1

λj
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How to use POD?

Given u1, ...,un and small integer m
Form X = {u1, ...,un}, R = XX T (or r = X T X )
Find m largest e.-v. of Rwj = λjwj , (wi ,wj) = δij

Form Reduced Model basis Vm = {w1, ...,wm}
Form Reduced Model problem V T

mF (Vmû) = 0

problem V T
mF (Vmû) = 0 has low dimension!
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How to use Reduced Model?

Solve Reduced Model problem F̂ (û) = V T
mF (Vmû) = 0 by INB

Project the solution to RN : u0 = Vmû
Use u0 as initial guess for F (u) = 0

INB for F̂ (û) = 0:

Evaluation of F̂ requires Vm·, F (·), V T
m ·

No preconditioning (small m)
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Use u0 as initial guess for F (u) = 0

INB for F̂ (û) = 0:
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Fully implicit schemes accelerated by POD and RM

Choose n, ε > 0. For i = 1, ...
If i ≤ n solve F i (ui ) = 0 with accuracy ε and ui

0 = ui−1

Else

1 if(mod(i ,n) = 1): form X = {uj}i−1
j=i−n,R = XX T ,

form RM basis Vm = {wj}m
j=1 :

N∑
k=m+1

λk < ε

2 solve V T
m F i (Vmûi ) = 0 with accuracy ε/10 ←Reduced Model

3 set ui
0 = Vmûi ←Initial Guess

4 solve F i (ui ) = 0 with accuracy ε ←Original Model

step 1 produces the reduced model basis (seldom)

step 2 solves implicitly the reduced model without preconditioning (m is small)

step 3 gives better initial guess for the original problem to be solved at step 4

adaptive choice of m may be replaced by Nλm+1 < ε, or even fixed m
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Example: unsteady lid driven cavity (2d NS)
Streamfunction formulation

− ∂

∂t
(∆ψ) +

1
Re

∆2ψ + (ψy (∆ψ)x − ψx (∆ψ)y ) = 0

ψ = 0 on ∂Ω,
∂ψ

∂n
=

{
v(t) if y = 1
0 if 0 ≤ y < 1

ψ|t=0 = 0 v(t) = 1 + 0.2 sin(t/10)→ quasi-periodic

ψ|t=0 = 0 v(t) = 1 + 0.2 sin([1 + 0.2 sin(t/5)]t/10)→ arrhythmic flow
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1+0.2*sin(t/10)
1+0.2*sin((1+0.2*sin(t/5))*t/10)

GMRES preconditioned by 1
Re ∆2 → independence of mesh size for Re = 103
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Effect of POD-RM for quasi-periodic case

h = 256−1 → 65025 dof, ‖F i (ui
k )‖ < 10−7‖F 0(0)‖

∆t = 5→∼ 13 time steps per period

n = 20→ X = {u20k−10 . . . u20k+9}, k = 1,2, . . .
dimension of the reduced model m = 10.

m = 10 eigenvectors is more than enough: λ1 = 4.7 · 103, λ10 = 5.6 · 10−8

Arnoldi process with 50 multiplications by matrix R →

‖Rw1 − λ1w1‖/λ1 = 5 · 10−16, ‖Rw10 − λ10w10‖/λ10 = 8 · 10−7
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Effect of POD-RM for quasi-periodic case
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Time RedMod
mean time without POD:15
mean time with POD:2.9
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Effect of POD-RM for quasi-periodic case

i 10 20 30 32 52 72
ui

0 = ui−1 ui
0 = Vmûi

‖F (ui
0)‖ 0.36 0.79 0.09 22 · 10−6 10−6 2.6 · 10−6

nevF 166 186 189 44+55 45+11 44+19
nprecF 160 180 183 0+51 0+ 9 0+16
CPU 13.4 15.3 16.1 1.2+4.2 1.1+1.1 1.1+1.2

average acceleration 5-6 times
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Effect of POD-RM for arrhythmic case
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Effect of POD-RM for arrhythmic case

i 10 20 30 32 52 72
ui

0 = ui−1 ui
0 = Vmûi

‖F (ui
0)‖ 0.01 2.2 1.3 5 · 10−4 4 · 10−4 2 · 10−4

nevF 115 205 227 50+98 42+80 49+77
nprecF 110 198 221 0+93 0+75 0+72
CPU 9.2 16.7 19.5 1.3+7.7 1.0+6.4 1.1+5.9

average acceleration 2 times
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GRID application
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Architecture of application

Two types of remoted computing resources:

Solver ←→ PODgenerator
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Features of GRID architecture and POD acceleration

Slow communication network with high latency time between
clusters of resources

POD acceleration can be used whenever POD data are available

no idling due to asynchronous non blocking communications

POD(generator)↔ Solver
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Features of GRID architecture and POD acceleration

High probability of failure of some part of the computing resources
(if resources are not dedicated to single application and single user)

POD generator can restart the computation on the solver resource

It can spawn a new set of MPI processes on Solver resource

It can provide last solution recovered from the reduced model (no
backup)
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Features of GRID architecture and POD acceleration

POD resource may work with several tasks

Its task is waiting data from Solver and computing POD basis

Due to asynchronous non blocking communications it can

- serve other Solvers
- make post-processing (visualization, a posteriori error estimates)
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Example: unsteady driven cavity (2d NS)

A Computer A = SGI Altix350
(2 Ithanium 1.3Ghz/3Mo, 1.3Gb/s network bandwidth)

B Computer B = Linux cluster
(AMD BiAthlon 1600+ MP, 100Mb/s network bandwidth)

N Network = latency 140 µs, maximum bandwidth 71Mb/s

Solver resource = Computer A
POD resource = Computer B
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Effect of POD-RM for quasi-periodic case
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Conclusions

Parallel computing technology should correlate to computational
algorithm
INB-POD-RM can accelerate implicit schemes in sequential and
parallel computations
INB-POD-RM can accelerate implicit schemes in GRID computing
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